基于改进免疫克隆多目标算法的轧制规程优化

赵新秋,孟庆刚,杨景明,车海军,

钢铁 ›› 2015, Vol. 50 ›› Issue (8) : 58-64.

欢迎访问《钢铁》官方网站!今天是 2025年7月26日 星期六
钢铁 ›› 2015, Vol. 50 ›› Issue (8) : 58-64. DOI: 10.13228/j.boyuan.issn0449-749x.20140614
冶金工艺技术

基于改进免疫克隆多目标算法的轧制规程优化

  • 赵新秋1,2,孟庆刚1,杨景明1,2,车海军1,2
作者信息 +

Optimization of rolling schedule based on improve immune clone multi- objective algorithm

  • 赵新秋1,2,孟庆刚1,杨景明1,2,车海军1,2
Author information +
文章历史 +

摘要

针对冷连轧轧制规程目标函数之间存在耦合、相互制约、难以选择目标侧重的问题,采用了一种先优化后选择的方式设定轧制规程。构造了等功率裕度、板形良好和防打滑目标负荷,建立了多目标轧制规程目标函数,采用改进的免疫克隆多目标算法对唐山某钢厂冷连轧机进行轧制规程优化计算。试验结果表明,改进的免疫克隆多目标算法能够很快地收敛到Pareto前沿,并且解集的分布性良好;优化后的不同偏好轧制规程组合可以满足不同的选择要求。与原规程相比,各轧机的利用更加合理,提高了轧机的利用效率,改善了带钢板形和表面质量,并且减少了划痕的产生概率。

Abstract

Rolling schedule is set by the model of optimize first and then choice to solve the difficult problem of select weight,because there is coupling and restrict each other between objective functions. In order to improve the efficiency of mill,improve the plate shape and surface quality,selecting the power distribution,excellent flatness and the slip rate as objective functions,The rolling schedule of steel cold rolling mill in Tangshan is optimized by Improve Immune Clone Multi- objective Algorithm(IICMA). The experiment results show that IICMA can guarantee convergence and improve the distribution degree of the population at the same time;and the optimized different preferences rolling schedules can meet the requirements of different choices. Compared with the original procedures,the use of the mill is more reasonable,flatness is better and the slip rate reduces to an acceptable level.

关键词

冷连轧 / 轧制规程 / 改进免疫克隆多目标算法 / 多目标

图表

引用本文

导出引用
赵新秋, 孟庆刚, 杨景明, . 基于改进免疫克隆多目标算法的轧制规程优化[J]. 钢铁, 2015, 50(8): 58-64 https://doi.org/10.13228/j.boyuan.issn0449-749x.20140614
DIAO Xin-Qiu, MENG Qiang-Gang, YANG Jing-Meng, et al. Optimization of rolling schedule based on improve immune clone multi- objective algorithm[J]. Iron and Steel, 2015, 50(8): 58-64 https://doi.org/10.13228/j.boyuan.issn0449-749x.20140614
中图分类号: TP301.6   

参考文献

[1] 孙一康.冷热轧板带轧机的模型与控制[M].北京:冶金工业出版社, 2010. [2]肖晓伟, 肖迪, 林锦国, 等.多目标优化问题的研究概述[J].计算机应用研究, 2011, 28(3):805-808 [3]Coello C A C, Cortes N C.Solving multi-objective optimization problems using an artificial immune system[J].Genetic Programming and Evolvable Machines, 2005, 6(2):163-190 [4]赵新秋, 王艳胜, 郑剑, 等.基于改进混洗蛙跳算法的冷连轧轧制规程优化[J].钢铁, 2012, 47(5):49-53 [5]白振华, 连家创, 王骏飞.冷连轧机以预防打滑为目标的压下规程优化研究[J].钢铁, 2003, 38(10):35-39 [6]戚玉涛, 刘芳, 刘静乐, 等.基于免疫算法和 的混合多目标优化算法[J].软件学报, 2013, 24(10):2251-2266 [7]韩丽霞.求解多目标优化问题的新遗传算法[J].计算机科学, 2013, 40(06A):64-66 [8] Li M Q, Zheng J H, Shen R M, Li K, Yuan Q Z.A Grid-Based Fitness Strategy for Evolutionary Many-Objective Optimization[J].In: Proceedings of Genetic and Evolutionary Computation Conference, 2010, 1(1):463-470 [9] Li M Q, Zheng J H, Li K, Yuan Q Z, Shen R M.Enhancing Diversity for Average Ranking Method in Evolutionary Many-Objective Optimization[J].In: Proceedings of Parallel Problem Solving from Nature - PPSN XI, 11th International Conference, 2010, 1(1):647-656 [10]M.Laumanns,LThiele,K.Deb,Eckart Zitzler.Combining convergence and diversity in evolutionary multi-objective optimization[J].Evolutionary Computation, 2002, 10(3):263-282 [11]Helbig S, Pateva D.On several concepts for ?-efficiency[J].Operations-Research-Spektrum, 1994, 16(3):179-186 [12]Van Veldhuizen David A and Gary B. Lamont.. Evolutionary Computation and Convergence to a Pareto Front[J].Late Breaking Papers at the Genetic Programming 1998 Conference, 1988, 1(1):221-228 [13] Schott Jason R.Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization[J].AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH, 1995, 1(1):76-136

基金

国家自然科学基金钢铁联合基金重点项目;国家冷轧板带装备及工艺工程技术研究中心开发课题资助;国家科技支撑计划课题;河北省高等学校创新团队领军人才培养计划;河北省科技支撑计划

Accesses

Citation

Detail

段落导航
相关文章

/