对新型奥氏体轴承材料GNiCr40Al3Ti进行固溶-时效处理,采用扫描电镜、金相显微镜和洛氏硬度计等分析手段,研究了固溶温度对其组织和性能的影响。结果表明,固溶温度越高,残留的α-Cr相粒子也越少,固溶效果越好,晶粒尺寸增加,固溶硬度下降。固溶过程主要受铬元素在基体中的扩散所控制,扩散激活能[ΔG]为(443±37) kJ/mol。时效后α-Cr相颗粒的平均尺寸基本保持在1.6 μm,大部分的α-Cr相颗粒尺寸分布在0.5~2.0 μm的范围内;固溶-时效后GNiCr40Al3Ti合金的硬度主要受固溶阶段基体溶解α-Cr相颗粒的程度影响,时效硬度最高达到61.5HRC。根据试验与分析结果,GNiCr40Al3Ti合金的固溶温度应不低于1 150 ℃, 以满足高硬度及良好机加工性能。
Abstract
The effects of solid solution and aging treatment on the microstructure and hardness were studied through the combination of TEM, optical microscope and Rockwell hardness. Results indicated that the increase of the solid solution temperature would result in the decrease of the volume fraction of a-Cr phase,refining the grain size and lowering of the hardness and. The solid solution treatment was mainly controlled by the bulk diffusion of Cr in the austenite with a diffusion activation energy of (443±37) kJ/mol. After aging, the a-Cr particle size ranged from 0.5-2.0 μm with average value of about 1.6 μm. The hardness of the alloy after aging was mainly determined by the quantity of α-Cr in the matrix, which could give 61.5HRC in the maximum. Based on the study of the solution and aging treatment, it was proposed that solid solution temperature of GNiCRr40Al3Ti should be higher than 1 150 ℃ to fulfill its high hardness and machining requirement.
关键词
奥氏体合金,固溶,时效,显微组织,硬度
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 徐祖耀,陈业新,陈伟业.GCr15轴承钢中等温马氏体的应用[J].钢铁,1990,25(6):47-50
XU Zu-yao, CHEN Ye-xin, CHEN Wei-ye. Application of isothermal martensite in GCr15 ball-bearing steel[J]. Iron & Steel, 1990,25(6):47-50
[2] 杨晓蔚.风电产业、风电设备及风电轴承[J].轴承,2009(12):54-59
YANG Xiao-wei. Wind power industry , wind power equipment and wind power bearing[J].Bearing, 2009(12):54-59
[3] 王会阳,安云岐,李承宇,晁兵,倪雅,刘国彬,李萍. 镍基高温合金材料的研究进展[J].材料导报.2011,25(18):482-486
WANG Hui-yang, AN Yun-qi, LI Cheng-yu, CHAO Bing, NI Ya, LIU Guo-bin, LI Ping. Research Progress of Ni-based Superalloys[J]. Materials Review. 2011,25(18):482-486
[4] 关红,崔树森,汪大成. 高温合金叶片精密成形技术研究[J].材料科学艺.2013,21(4):143-148
GUAN Hong,CUI Shu-sen,WANG Da-cheng. The study of high temperature alloy vane precision forming technology[J]. Materials Science and Technology. 2013,21(4):143-148
[5] 李清华, 赵志力. 真空冶金现状及发展前景[J]. 沈阳大学学报.2003,15(2):35-37
LI Qing- hua, ZHAO Zhi- li. The present situation and the prospect of vaccum metallurgy[J]. Journal of Shenyang University. 2003,15(2):35-37
[6] 钢铁研究总院等,镍基高温合金译文集.1973
China Iron & Steel Research Institute Group. Translations of nickel-based superalloy,1973
[7] Kazumi Shimotori, Kagetaka Amano and Yoshiharu Fukasawa. Effects of Alloying Elements on Elevated-Temperature Mechanical Strength of High Cr, Ni-Base Heat Resistant Alloy[J]. J.Japan Inst.Met.Mater.1972,36(8):818-825
[8] Kazumi Shimotori, Mitsuo Kawai and Hirokazu Tokoro. Effects of Al and Ti on Age-Hardenability of 40Cr-Ni Alloy[J]. J.Japan Inst.Met.Mater.1972,36(7):685-692
[9] Shuichi Komatsu, Masako Nakahashi, Itaru Watanabe and Kazumi Shimotori. Microscopic Observation of γ' and α -Cr Duplex Precipitation in 40Cr-4Al-Ni Alloy[J]. J.Japan Inst.Met.Mater. 1972,36(7):685-692
[10] Ali Hedayati,Abbas Naj afizadeh,Ahmad Kermanpur,et al.The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel.Journal of Processing Technology 210(2010):1017-1022.
[11] Silva PMdO,de Abreu HFG de Albuquerque VHC,et al. Cold deformmion effect onthe microstructure and mechanical properties of IASI 301LN and 316L stainless steels.J Master Design(2010),doi:10.1016/j.matdes.2010.08.012
[12] 方家芬. G60 奥氏体沉淀硬化合金热处理工艺研究[J].热处理,2004,14(9):48-51
FANG Jia-fen. Study on Heat Treatment Processes of G60 Austenitic Precipitation-Hardebing Alloy[J]. Heat Treatment,2004,14(9):48-51
[13] 雍岐龙. 钢铁结构材料中的第二相[M].2006
YONG Qi-long. Second Phases in Structural Steels[M].2006
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}