氮对含铌20MnSi钢组织演变的影响

曹 磊,杨忠民,陈 颖,王慧敏,赵晓丽

钢铁 ›› 2015, Vol. 50 ›› Issue (11) : 75-80.

欢迎访问《钢铁》官方网站!今天是 2025年7月31日 星期四
钢铁 ›› 2015, Vol. 50 ›› Issue (11) : 75-80. DOI: 10.13228/j.boyuan.issn0449-749x.20150118
钢铁材料

氮对含铌20MnSi钢组织演变的影响

  • 曹 磊,杨忠民,陈 颖,王慧敏,赵晓丽
作者信息 +

Effect of nitrogen on the microstructure evolution in 20MnSi steel bearing with niobium

  • 曹 磊,杨忠民,陈 颖,王慧敏,赵晓丽
Author information +
文章历史 +

摘要

研究了不同冷速条件下氮对铌微合金化20MnSi钢组织演变的影响。试验钢经1 200 ℃全固溶处理后快冷至[Ac3,]然后分别以200、100 ℃/h速度冷却至室温。对试样进行了OM、SEM和TEM观察。结果表明:钢中细小Nb(C,N)粒子在原奥氏体晶内高密度位错区的密集析出导致贫碳区的形成,进而激发针状铁素体的形核长大。铌微合金钢增氮后能有效抑制钢中针状铁素体的生成,促进等轴铁素体的生成和珠光体球团的细小均匀化,同时珠光体退化倾向减弱或消失。

Abstract

Investigations were carried out to evaluate the influence of nitrogen on the microstructure evolution in 20MnSi steel bearing with niobium. Two steels with different nitrogen contents solution treated at 1 200 ℃ were rapidly cooled to their[Ac3]and then cooled to the room temperature at the cooling rates of 200 and 100 ℃/h, respectively. Observations were conducted by optical microscopy(OM),scanning electron microscopy(SEM)and transmission electron microscopy(TEM). The results demonstrate that the acicular ferrite nucleated and grew at the carbon-poor areas which were caused by the Nb(C, N) precipitation at the high density dislocation region within the prior austenite grain. The enhancement of nitrogen was beneficial to inhibit the formation of the acicular ferrite and promote the formation of equaxied ferrite. Also, the fraction of degenerated pearlite was decreased and the pearlite nodules were in a fine and uniform distribution.

关键词

/ 铌微合金化 / 针状铁素体 / 退化珠光体

图表

引用本文

导出引用
曹磊, 杨忠民, 陈颖, . 氮对含铌20MnSi钢组织演变的影响[J]. 钢铁, 2015, 50(11): 75-80 https://doi.org/10.13228/j.boyuan.issn0449-749x.20150118
CAO Lei, YANG Zhong-Min, CHEN Ying, et al. Effect of nitrogen on the microstructure evolution in 20MnSi steel bearing with niobium[J]. Iron and Steel, 2015, 50(11): 75-80 https://doi.org/10.13228/j.boyuan.issn0449-749x.20150118

参考文献

[1] Liljas M, Nilsson J O. Development of commercial nitrogen-rich stainless steels. Materials science forum, Trans Tech Publ, 1999, 318:189-200.

[2] Yang C-f, Wang Q-l. Research, Development, and Production of V-N Microalloyed High Strength Rebars for Building in China[J]. Journal of Iron and Steel Research, International, 2008,15(2):81-86.

[3] Vervynckt S, Thibaux P, Verbeken K. Effect of niobium on the microstructure and mechanical properties of hot rolled microalloyed steels after recrystallization-controlled rolling[J]. Metals and Materials International, 2012,18(1):37-46.

[4] Klinkenberg C. Niobium in microalloyed structural and engineering steels. Materials science forum, Trans Tech Publ, 2007, 539: 4261-4266.

[5] Subramanian S V, Rehman M K, Zurob H S, Shang C J. Recrystallization and Grain Coarsening Control in Processing High Niobium Microalloyed Line Pipe Steels. Materials Science Forum, Trans Tech Publ, 2013, 753:391-396.

[6] She Y, Zhang Z H, Ju J T, Jin B. Phase Transformation Behavior of Niobium Containing Microalloyed Steel with Predeformation and Continuous Cooling. Materials Science Forum, Trans Tech Publ, 2015, 804:.281-284.

[7] Klinkenberg C, Hulka K, Bleck W. Niobium carbide precipitation in microalloyed steel[J]. Steel research international, 2004,75(11):744-752.

[8] Lakshmanan V, Kirkaldy J. Solubility product for niobium carbide in austenite[J]. Metallurgical Transactions A, 1984,15(3):541-544.

[9] Hong S C, Lim S H, Hong H S, Lee K J, Shin D H, Lee K S. Effects of Nb on strain induced ferrite transformation in C–Mn steel[J]. Materials Science and Engineering: A, 2003,355(1–2):241-248.

[10] Radis R, Kozeschnik E. Numerical simulation of NbC precipitation in microalloyed steel[J]. Modelling and Simulation in Materials Science and Engineering, 2012,20(5):055010.

[11] Campillo B, Flores O, Albarran J L, Juarez-Islas J, Perez R, Martinez L, Lopez D. Dissolution and coarsening of large niobium carbonitrides in a microalloyed steel[J]. Journal of materials science, 1992,27(5):1365-1368.

[12] Campillo B, Albarran J, Estevez F, Lopez D, Martinez L. Precipitation of niobium nitrides in a high nitrogen HSLA steel[J]. Scripta metallurgica, 1989,23(8):1363-1368.

[13] Albarran J, Campillo B, Estevez F, Martinez L. A study of the effect of nitrogen in two niobium microalloyed steels[J]. Scripta metallurgica, 1989,23(7):1099-1104.

[14] Shams N. Austenite grain coarsening in low–carbon manganese steels containing niobium and aluminium[J]. Materials Science and Technology, 1985,1(11):950-953.

[15] 王厚昕. 钢中氮含量的控制及其应用于微合金化钢的研究[D]. 钢铁研究总院, 2006.

[16] Sarma D S, Karasev A V, ouml, nsson P G. On the Role of Non-metallic Inclusions in the Nucleation of Acicular Ferrite in Steels[J]. ISIJ International, 2009,49(7):1063-1074.

[17] Babu S, Bhadeshia H. Mechanism of the transition from bainite to acicular ferrite[J]. Materials Transactions, JIM(Japan), 1991,32(8):679-688.

[18] Burgmann F, Xie Y, Cairney J, Ringer S, Killmore C, Barbaro F, Williams J. The effect of niobium additions on ferrite formation in castrip steel. Mater. Forum, 2008. 32: 9-12.

[19] Chen Y, Zhang D, Liu Y, Li H, Xu D. Effect of dissolution and precipitation of Nb on the formation of acicular ferrite/bainite ferrite in low-carbon HSLA steels[J]. Materials Characterization, 2013,84(0):232-239.

基金

中信-CBMM铌钢R&D项目

41

Accesses

0

Citation

Detail

段落导航
相关文章

/