大掺量钢渣-尾矿蒸压砖水化过程的强化

李鹏冠,赵风清,

钢铁 ›› 2016, Vol. 51 ›› Issue (10) : 84-90.

欢迎访问《钢铁》官方网站!今天是 2025年7月31日 星期四
钢铁 ›› 2016, Vol. 51 ›› Issue (10) : 84-90. DOI: 10.13228/j.boyuan.issn0449-749x.20160018
环保与能源

大掺量钢渣-尾矿蒸压砖水化过程的强化

  • 李鹏冠1,赵风清1,2
作者信息 +

Hydration intensification of autoclaved brick with high volume steel slag and tailings

  • 李鹏冠1,赵风清1,2
Author information +
文章历史 +

摘要

因活性低、体积稳定性差,钢渣在蒸压砖中的用量受到限制。以钢渣-尾矿-水泥蒸压体系为基础,增加旨在改善钢渣安定性的预养护阶段。同时,加入柠檬酸钠作为抑制剂,减少预养护阶段钢渣中胶凝成分的损失。结果表明,当柠檬酸钠掺量为钢渣掺量的2%时,钢渣在尾矿蒸压试块中的安全用量由未改性时的11%提高至45%,水泥用量由7%降低至4%,其抗压强度从10.6提高到30.1 MPa。借助化学结合水量、游离氧化钙质量分数及XRD分析了钢渣的水化特征,柠檬酸钠在大掺量钢渣-尾矿-水泥体系中既是钢渣改性过程中硅酸二钙和硅酸三钙水化的抑制剂,又是蒸压条件下激发钢渣的水化活性激发剂。机械磨细、湿热条件和柠檬酸钠的协同作用强化了体系的水化反应过程。

Abstract

Because of low hydrate activity and poor volume stability,the use of steel slag in autoclaved brick is limited. Based on the autoclave system of steel slag-tailings-cement,the pre-curing period was used in order to improve the stability of steel slag. Meanwhile,sodium citrate was added as the retarder to reduce the loss of cementitious activity in slag. Main results indicated that when the dosage of sodium citrate was 2% (based on the mass of steel slag), the compressive strength of the autoclaved brick increased from 10.6 MPa (without modification)to 30.1 MPa while the amount of steel slag in brick increased from 11% to 45% and the amount of cement reduced from 7% to 4%. The hydration characteristics of steel slag were analyzed by measuring its chemically combined water and free-CaO and by using X-ray spectrometer. For the autoclave process with high volume steel slag-tailings-cement,sodium citrate works as not only the retarder for hydration of dicalcium silicate and tricalcium silicate in the process of the steel slag modification,but also the activator in autoclave process. The hydration process was intensified by the synergistic effect of mechanical grinding,hygrothermal treatment and sodium citrate.

关键词

钢渣 / 安定性 / 抑制剂 / 激发剂 / 蒸压砖

Key words

Steel slag / Stability / Retarder / Activator / Autoclaved brick

图表

引用本文

导出引用
李鹏冠, 赵风清. 大掺量钢渣-尾矿蒸压砖水化过程的强化[J]. 钢铁, 2016, 51(10): 84-90 https://doi.org/10.13228/j.boyuan.issn0449-749x.20160018
LI Peng-Guan, DIAO Feng-Qing. Hydration intensification of autoclaved brick with high volume steel slag and tailings[J]. Iron and Steel, 2016, 51(10): 84-90 https://doi.org/10.13228/j.boyuan.issn0449-749x.20160018

参考文献

[1].[J]., 2014, 97:3973-3981 [2] Moruf Olalekan Yusuf, Megat Azmi Megat Johari, Zainal Arifin Ahmad, etal.Shrinkage and strength of alkaline activated ground steel slag/ultrafine palm oil fuel ash pastes and mortars[J]. Materials and Design, 2014, 63: 710-718. [3] Hisham Qasrawi, Faisal Shalabi, Ibrahim Asi.Use of low CaO unprocessed steel slag in concrete as fine aggregate[J]. Construction and Building Materials, 2009, 23: 1118-1125. [4]赵俊学,李小明,唐雯聃等.钢渣综合利用技术及进展分析[J].鞍钢技术, 2013, 381(3):1-6 [5]张朝晖,廖杰龙,巨建涛,等.钢渣处理工艺与国内外钢渣利用技术[J].钢铁研究学报, 2013, 25(7):1-4 [6] 张丽颖,李俊国.钢渣的资源化利用现状及发展趋势[J]. 统计与管理,2015,(8): 126-127. [7]徐国涛,王悦,张洪雷.钢渣安定性处理技术与工艺的探讨[J].钢铁研究, 2009, 37(2):54-56 [8]郭家林,赵俊学,黄敏钢.钢渣综合利用技术综述及建议[J].中国冶金, 2009, 19(2):35- [9] 陈盛建,高宏亮.钢渣综合利用技术及展望[J]. 南方金属,2004, (5): 2-4. [10] 王纯,杨景玲,朱桂林等.钢铁渣高价值利用技术发展和现状[J]. 中国废钢铁,2012, (1): 42. [11]易龙生,温建.钢渣活性激发技术的研究现状和进展[J].硅酸盐通报, 2013, 32(10):2058-2061 [12] Li Lan-lan, Zhao Feng-qing, etal.The activation of steel slag and its application in construction and building materials[J]. Biotechnology, chemical and materials engineering, 2014: 702-705. [13] P.G. Li, F.Q. Zhao, Z. Ma. Improving the Volume Stability of Steel Slag for Construction and building Materials[J]. Advanced Materials Research, 2014, (936): 1399-1403. [14] P.G. Li, F.Q. Zhao. Autoclaved Brick from Steel Slag and Silicon Tailings[J]. Advanced Materials Research, 2014, (878):194-198. [15]郭高峰,王治,赵维林,等.机械和化学复合激发钢渣-矿渣复合粉[J].河南科学, 2015, 33(7):1185-1188 [16]王强,杨建伟,张波.机械磨细对钢渣中粗颗粒的胶凝性能的影响[J].清华大学学报, 2013, 53(9):1228-1230 [17] 张志国,李鹏冠,李兰兰.钢渣预处理制蒸压砖的研究[J]. 砖瓦, 2014, (3):3-5. [18] Lubica Kriskova, Yiannis Pontikes, ?zlem Cizer, etal.Effect of mechanical activation on the hydraulic properties of stainless steel slags[J]. Cement and Concrete Research, 2012, 42: 778-788. [19] Salman M, Cizer?, Pontikes Y, etal.Thermoalkali activation of continuous casting stainless steel slag[J]. In: 12th Conference of the European Ceramic Society – ECerS XII. Stockholm, Sweden, 2011. [20] 韩甲兴,杨刚,刘国威,等.钢渣蒸汽加压稳定化预处理技术的研究[J]. 矿产综合利用, 2013, (6): 66-68. [21] 李玉祥,王振兴,冯敏,等.不同激发剂对钢渣活性影响的研究[J]. 硅酸盐通报, 2012, (2): 280-284. [22] 田秀淑,赵子伯,金婷艳.激发剂对钢渣-矿粉胶凝材料力学性能的影响及机理分析[J]. 混凝土与水泥制品, 2015, (4): 90-92. [23] Zaibo Li, Sanyin Zhao, Xuguang Zhao, etal.Cementitious property modification of basic oxygen furnace steel slag[J]. Construction and Building Materials, 2013, 48: 575-579. [24] 河北科技大学.一种钢渣安定性处理方法:中国, CN 103524058 A [P/OL]. 2014-01-22 [2016-01-13]. http://www2.soopat.com/Patent/201310468024. [25]杜君,刘家祥,李敏.乙二醇-滴定法与热解重量-示差热分析法相结合测定钢渣中游离氧化钙含量[J].理化检验-化学分册, 2013, 49(8):961-964 [26]王博,刘家祥,朱桂林,等.乙二醇-法测定钢渣中的游离氧化钙[J].北京化工大学学报自然科学版, 2011, 38(2):18-20 [27]张波,胡瑾,阎培渝.钢渣在蒸养条件下的安定性[J].电子显微学报, 2014, 33(3):247-249

基金

利用尾矿、钢渣生产蒸压砖关键技术开发与应用

16

Accesses

0

Citation

Detail

段落导航
相关文章

/