HCP-Mg平衡固液界面的微观结构

肖钧江,,吕琳琳,,蒋烨炜,,罗 洁,,吴永全,

钢铁 ›› 2017, Vol. 52 ›› Issue (2) : 78-84.

欢迎访问《钢铁》官方网站!今天是 2025年7月25日 星期五
钢铁 ›› 2017, Vol. 52 ›› Issue (2) : 78-84. DOI: 10.13228/j.boyuan.issn0449-749x.20160246
钢铁材料

HCP-Mg平衡固液界面的微观结构

  • 肖钧江1,2,3,吕琳琳1,2,3,蒋烨炜1,2,3,罗 洁1,2,3,吴永全1,2,3
作者信息 +

Microstructure of equilibrium solid-liquid interface of HCP-Mg

  • 肖钧江1,2,3,吕琳琳1,2,3,蒋烨炜1,2,3,罗 洁1,2,3,吴永全1,2,3
Author information +
文章历史 +

摘要

采用NVE系综分子动力学(molecular dynamics, MD)方法模拟了HCP-Mg三个不同晶向的平衡固液界面,通过原子标定技术,在“layering and in-plane ordering”框架内,对固液界面的结构特征进行了分析。在验证了势函数有效性的基础上,通过界面微观结构分析发现,序参数在由固相向液相衰减的过程中呈现了很好的双曲正切的连续变化规律;以序参数[aq6]为标准计算得到的界面宽度要比序参数[ξ]的界面宽度大0.1~0.2 nm;同时,界面宽度存在各向异性,[0001]方向界面宽度最大,[[1100]]和[[1210]]方向界面宽度基本相等,这与界面热力学的各向异性保持一致;界面的波动幅度达到界面宽度的5%~10%;此外,Layering方法定位的界面宽度要远远超过in-plane ordering方法定位的界面宽度,吻合于异质固液界面的试验观察。

Abstract

The NVE ensemble molecular dynamics (MD) simulation was applied to analyze the microstructure of the equilibrium solid-liquid interface of HCP-Mg in three low-index orientations. The analysis is within the framework of “layering and in-plane ordering” and the key is the technique of atom identification. Based on the fully validation of selected atom interaction potential, a great deal of equilibrium solid-liquid interface configurations was obtained for subsequent analysis and the following conclusions from it were reached. All order parameters show hyperbolic tangent profiles decaying from bulk solid to liquid. The interfacial width from[aq6]is 0.1-0.2 nm larger than those of the corresponding[ξ.]The interfacial width in [0001] orientation is larger than those in other [[1210]] and [[1100]] orientations, which represents the anisotropy of structure coinciding with the anisotropy of interfacial thermodynamics. The fluctuation amplitude is as large as 5%-10% of the corresponding interface width. In addition, the width in frame of layering is truly larger than that in frame of in-plane ordering, which was observed in the HRTEM of heterogeneous interface.

关键词

HCP-Mg / 固液界面 / 界面分层及层内有序 / 分子动力学模拟

图表

引用本文

导出引用
肖钧江, 吕琳琳, 蒋烨炜, . HCP-Mg平衡固液界面的微观结构[J]. 钢铁, 2017, 52(2): 78-84 https://doi.org/10.13228/j.boyuan.issn0449-749x.20160246
XIAO Jun-Jiang, LV Lin-Lin, JIANG Ye-Wei, et al. Microstructure of equilibrium solid-liquid interface of HCP-Mg[J]. Iron and Steel, 2017, 52(2): 78-84 https://doi.org/10.13228/j.boyuan.issn0449-749x.20160246

参考文献

1. Turnbull, D. Formation of Crystal Nuclei in Liquid Metals[J]. Journal of Applied Physics, 1950, 21(10): 1022-1028.
2. Guggenheim, EA. The thermodynamics of interfaces in systems of several components[J]. Transactions of the Faraday Society, 1940, 35(0): 397-412.
3. Hoyt, JJ, M Asta, and A Karma. Method for computing the anisotropy of the solid-liquid interfacial free energy[J]. Physical Review Letters, 2001, 86(24): 5530-5533.
4. Hoyt, JJ, M Asta and A Karma. Atomistic and continuum modeling of dendritic solidification[J]. Materials Science and Engineering: R: Reports, 2003, 41(6): 121-163.
5. Buta D, M Asta, and JJ Hoyt. Atomistic simulation study of the structure and dynamics of a faceted crystal-melt interface[J]. Physical Review E, 2008, 78(3): 2365-2389.
6. Kaplan WD. Structural order in liquids induced by interfaces with crystals[J]. Annual Review of Materials Research, 2006, 36(1): 1-48.
7. Laird BB and ADJ Haymet. The crystal/liquid interface: structure and properties from computer simulation[J]. Chemical Reviews, 1992, 92(8): 1819-1837.
8. Kauffmann Y. Quantitative analysis of layering and in-plane structural ordering at an alumina-aluminum solid-liquid interface[J]. Acta Materialia, 2011, 59(11): 4378-4386.
9. Oh SH. Ordered liquid aluminum at the interface with sapphire[J]. Science, 2005, 310(5748): 661-663.
10. Sun DY. Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg[J]. Physical Review B, 2006, 73(2): 024116-024116.
11. Gao YF. Molecular dynamics simulations of the crystal–melt interface mobility in HCP Mg and BCC Fe[J]. Journal of Crystal Growth, 2010, 312(21): 3238-3242.
12. Xia ZG. Molecular dynamics calculations of the crystal-melt interfacial mobility for hexagonal close-packed Mg[J]. Physical Review B, 2007, 75(1): 012103-012103.
13. Steinhardt PJ, DR Nelson, and M Ronchetti. Bond-orientational order in liquids and glasses[J]. Physical Review B, 1983, 28(2): 784-805.
14. Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.
15. Liu XY. EAM potential for magnesium from quantum mechanical forces[J]. Modelling & Simulation in Materials Science & Engineering, 1996, 4(3): 293-303.
16. Hoover WG, SG Gray, and KW Johnson. Thermodynamic Properties of the Fluid and Solid Phases for Inverse Power Potentials[J]. Journal of Chemical Physics, 1971, 55(3): 1128-1136.
17. Lechner, W and C Dellago. Accurate Determination of Crystal Structures Based on Averaged Local Bond Order Parameters[J]. Journal of Chemical Physics, 2008, 129(11): 114707-114707.
18. Waseda Y, K Yokoyama, and K Suzuki. The Structure of Liquid Alkaline Earth Metals[J]. Philosophical Magazine, 1974, 30(5): 1195-1198.
19. Li R, Y Wu, and J Xiao. The Nucleation Process and The Roles of Structure and Density Fluctuations in Supercooled Liquid Fe[J]. Journal of Chemical Physics, 2014, 140(3): 646-654.
20. Erdemir D, AY Lee, and AS Myerson. Nucleation of Crystals from Solution: Classical and Two-Step Models[J]. Accounts of Chemical Research, 2009, 42(5): 621-629.
21. Mendelev MI. Molecular Dynamics Study of Solid–liquid Interface Migration in FCC Metals[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(7): 1825-1830.
22. Sorkin V, E Polturak, and J Adler. Molecular Dynamics Study of Melting of the BCC Metal Vanadium. II. Thermodynamic Melting[J]. Physical Review B, 2003, 68(17): 174103-174103.
23. Becker CA. Atomistic simulations of crystal-melt interfaces in a model binary alloy: Interfacial free energies, adsorption coefficients, and excess entropy[J]. Physical Review B, 2009, 79(5): 457-457.

基金

企业隐性环境知识管理及其对环境绩效和经济绩效关系的作用机理研究;企业隐性环境知识管理及其对环境绩效和经济绩效关系的作用机理研究

Accesses

Citation

Detail

段落导航
相关文章

/