热轧轧制压力横向分布规律及预测模型

柴箫君,李洪波,张 杰,周一中,马珩皓,张鹏武

钢铁 ›› 2017, Vol. 52 ›› Issue (6) : 52-60.

欢迎访问《钢铁》官方网站!今天是 2025年7月25日 星期五
钢铁 ›› 2017, Vol. 52 ›› Issue (6) : 52-60. DOI: 10.13228/j.boyuan.issn0449-749x.20160473
压力加工

热轧轧制压力横向分布规律及预测模型

  • 柴箫君1,李洪波1,张 杰1,周一中2,马珩皓2,张鹏武2
作者信息 +

Transverse distribution law of rolling force and its prediction model in hot rolling

  • 柴箫君1,李洪波1,张 杰1,周一中2,马珩皓2,张鹏武2
Author information +
文章历史 +

摘要

轧制压力横向分布规律对快速轧辊轧件一体化模型的建立、轧辊磨损及辊形预测具有重要的意义。为简洁有效地描述轧制压力横向分布,提出了轧制压力横向分布表征指标,即边中比、高次程度、一次非对称度及三次非对称度。通过有限单元法建立了轧件三维弹塑性变形模型,并根据实测数据对模型边界条件进行设置,研究了不同因素影响下的轧制压力横向分布规律。考虑到各生产因素对轧制压力横向分布的影响不完全独立,不易获得函数表达式,以多组工况下有限元仿真结果为基础,建立多生产因素影响下的轧制压力横向分布人工神经网络预测模型,为轧辊轧件一体化快速计算模型的建立奠定了基础。

Abstract

Transverse distribution of rolling force has great significance for the building of the integration model consisting of roller and rolled piece and the prediction of wear contour of work roller. In order to characterize the transverse distribution of rolling force, several indexes have been proposed:edge value to center value ratio,degree of high order,degree of linear asymmetry,degree of cubic asymmetry. A 3D elastic-plastic model based on the finite element method whose boundary condition was set up by the rolling force measured in the rolling spot has been built to study the transverse distribution with different rolling factors. Because of the combined action of all the factors,it is difficult to establish an explicit function. Therefore,instead of traditional mathematical function,an artificial neural network based on the FEM simulation results has been established,which lays an important foundation for the establishment of rapid integration model consisting of roller and rolled piece.

关键词

热轧 / 轧制压力 / 横向分布 / 有限元 / 人工神经网络模型

图表

引用本文

导出引用
柴箫君, 李洪波, 张杰, . 热轧轧制压力横向分布规律及预测模型[J]. 钢铁, 2017, 52(6): 52-60 https://doi.org/10.13228/j.boyuan.issn0449-749x.20160473
CI Xiao-Jun, LI Hong-Bei, ZHANG Jie, et al. Transverse distribution law of rolling force and its prediction model in hot rolling[J]. Iron and Steel, 2017, 52(6): 52-60 https://doi.org/10.13228/j.boyuan.issn0449-749x.20160473
中图分类号: TG335.11   

参考文献

[1] BULUT B, KATEBI M R, GRIMBLE M J. Co-ordinated control of profile and shape in hot strip finishing mills with nonlinear dynamics [J]. Iee Proceedings-Control Theory and Applications, 2002, 149(5): 471.
[2] SIMS R B. The Calculation of Roll Force and Torque in Hot Rolling Mills [J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers 1847-1982 (vols 1-196), 1954, 168(1954): 191.
[3] ZHU F-W, ZENG Q-L, HU X-L, et al. Long- and Short-Term Self-Learning Models of Rolling Force in Rolling Process Without Gaugemeter of Plate [J]. Journal of Iron and Steel Research, International, 2009, 16(1): 27.
[4] 宋勇,苏岚,荆丰伟,等.热轧带钢轧制力模型自学习算法优化[J].北京科技大学学报.2010,32(06):802.
SONG Yong, SU Lan, JING Feng-wei, et al. Self-learning algorithm optimization for the rolling force model of hot strips [J]. Journal of University of Science and Technology Beijing. 2010, 32(06): 802.
[5] CASTANEDA R S, GUILLEN F E, GONZALEZ R T, et al. Development of simple equation for calculating average wear of hot strip mill work rolls [J]. Ironmaking & Steelmaking, 2014, 41(5): 369.
[6] 胡衍生,程晓茹,李虎兴,等.中厚板辊型设计中压力沿辊身分布算法[J].钢铁研究学报.2006,18(3):15.
HU Yan-sheng, CHENG Xiao-ru, LI Hu-xing, et al. Pressure distribution algorithm of roll camber design for medium and heavy plate[J]. Journal of Iron and Steel Research. 2006, 18(3): 15.
[7] 徐致让,孙中建.四辊轧机轧制压力横向分布的计算[J].钢铁研究学报.1998,10(4):23.
XU Zhi-rang, SUN Zhong-jian. Calculation of rolling force tranversal distribution for 4-high mill[J]. Journal of Iron and Steel Research. 1998,10(4): 23.
[8] KAINZ A J, WIDDER M E, ZEMAN K. Enhanced strip-roll coupling concepts for the numerical simulation of flat hot rolling [J]. Acta Mechanica, 2013, 224(5): 957.
[9] MALIK A S, GRANDHI R V. A computational method to predict strip profile in rolling mills [J]. Journal of Materials Processing Technology, 2008, 206(1): 263
[10] WANG T, XIAO H, ZHAO T-Y, et al. Improvement of 3-D FEM Coupled Model on Strip Crown in Hot Rolling [J]. Journal of Iron and Steel Research International, 2012, 19(3): 14.
[11] DIXON A E, YUEN W Y D. A physical based method to predict spread and shape during flat rolling for real-time application [J]. steel research international, 2008, 79(4): 287.
[12] MOAZENI B, SALIMI M. Investigations on relations between shape defects and thickness profile variations in thin flat rolling [J]. International Journal of Advanced Manufacturing Technology, 2015, 77(5-8): 1315.
[13] 李成伟,王晓晨,杨荃,等.热轧带钢金属横向流动及影响因素[J].北京科技大学学报.2013,35(2):222.
LI Cheng-wei, WANG Xiao-chen, YANG Quan, et al. Metal transverse flow and its influence factors of hot rolled strips[J]. Journal of University of Science and Technology Beijing. 2013, 35(2): 222.
[14] SHAHANI A, SETAYESHI S, NODAMAIE S, et al. Prediction of influence parameters on the hot rolling process using finite element method and neural network [J]. Journal of Materials Processing Technology, 2009, 209(4): 1920.
[15] BAGHERIPOOR M, BISADI H. Application of artificial neural networks for the prediction of roll force and roll torque in hot strip rolling process [J]. Applied Mathematical Modelling, 2013, 37(7): 4593.

基金

国家十二五科技支撑计划项目

27

Accesses

0

Citation

Detail

段落导航
相关文章

/