针对某钢厂GCr15钢连铸坯质量问题,利用实验室试验和ProCAST模拟软件对连铸坯二次枝晶臂间距进行研究,分析过热度、拉速和二冷水量对二次枝晶臂间距的影响,并进一步探究碳偏析与二次枝晶臂间距的关系。结果表明,铸坯二次枝晶臂间距从铸坯表面到中心呈先增大后减小的趋势,与ProCAST模拟结果基本一致。降低过热度和拉速、增大二冷水量均有助于减小二次枝晶臂间距;为了提高连铸坯质量,建议将过热度、拉速和二冷水量分别控制在20 ℃、0.45 m/min、0.32 L/kg左右。铸坯碳偏析最大值位于柱状晶向等轴晶转变区域(CET)。
Abstract
The secondary dendrite arm spacing(SDAS) was studied by laboratory experiments and ProCAST simulation software in order to solve the continuous casting billet quality problems of GCr15 Steel,the effects of superheat,casting speed and secondary cooling intensity on the SDAS were also analyzed,and further investigated the relationship between the carbon segregation and the SDAS. The results show that the SDAS of the bloom increases at first and then decreases from the surface to the center,which is consistent with the ProCAST simulation results. Reducing superheat and casting speed,increasing secondary cooling intensity are helpful to reduce the SDAS,so in order to improve the quality of continuous casting billet,it is recommended to control superheat at 20 ℃,casting speed at 0.45 m/min and secondary cooling intensity respectively at about 0.32 L/kg. The max carbon segregation of bloom often occurs in the columnar-to-equiaxed transition (CET) zone.
关键词
大方坯 /
GCr15 /
显微组织 /
数值模拟 /
二次枝晶臂间距
{{custom_keyword}} /
Key words
bloom /
GCr15 /
microstructure /
numerical simulation /
secondary dendrite arm spacing
{{custom_keyword}} /
中图分类号:
TF76
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]刘博,窦坤,杨振国,等.轴承钢大方坯宏观碳偏析形成机理及二次冷却调控机制研究[J].连铸, 2015, 40(5):7-14
[2]赖朝彬,辛博,陈伟庆,等.连铸板坯二次枝晶臂间距对中心碳偏析的影响[J].炼钢, 2009, 25(4):42-45
[3]李晨希,郭太明,李荣德,等.二次枝晶臂间距的研究[J].铸造, 2004, 53(12):1011-1014
[4]Feurer U, Wunderlin R.Metal solidification: DGM Fachber, Stuttgart Google Scholar[M]. 1977.
[5]Abel T, Brener E, Müller-Krumbhaar H.Three-dimensional growth morphologies in diffusion-controlled channel growth[J].Physical Review E, 1997, 55(6):7789-7792
[6]Mortensen A.Secondary arm spacing: McGrawhill, Inc., New York[M]. 1991.
[7]冯军,陈伟庆,韩静.连铸参数对高碳钢小方坯二次枝晶间距的影响[J].钢铁, 2006, 41(9):37-39
[8].李日.铸造工艺仿真ProCAST从入门到精通[M].中国水利水电出版社,2010.
[9]Gandin C, Desbiolles J, Rappaz M, et al.A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures[J].Metallurgical and Materials Transactions A, 1999, 30(12):3153-3165
[10].虞觉奇,易文质,陈邦迪.二元合金状态图集[M].上海:上海科学技术出版社,1987.
[11].陈家祥.钢铁冶金学 (炼钢部分)[M].冶金工业出版社,1990.
[12].李文超.冶金与材料物理化学[M].北京:冶金工业出版社,2001.
[13].许庆太,王文仲.连铸钢坯低倍检验和缺陷图谱[M].中国标准出版社,2009.
[14]M C J, Carrenogalindo V, D M R, et al.Macro-Micro Modeling of the Dendritic Microstructure of Steel Billets Processed by Continuous Casting[J].Isij International, 1998, 38(8):812-821
[15].蔡开科,程士富.连续铸钢原理与工艺[M].冶金工业出版社,1994.
[16]魏军,刘中柱,蔡开科,等.炼钢—精炼—连铸工艺生产高碳钢的质量控制[J].炼钢, 2000, 16(3):46-51
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金
{{custom_fund}}