基于力反馈模型的板坯连铸液芯终点位置判定

金 昕,温 习,史学亮,刘大伟,任廷志,

钢铁 ›› 2018, Vol. 53 ›› Issue (6) : 61-69.

PDF(1199 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月29日 星期二
PDF(1199 KB)
钢铁 ›› 2018, Vol. 53 ›› Issue (6) : 61-69. DOI: 10.13228/j.boyuan.issn0449-749x.20170584
炼钢

基于力反馈模型的板坯连铸液芯终点位置判定

  • 金 昕1,2,温 习1,2,史学亮3,刘大伟1,2,任廷志1,2
作者信息 +

Solidification end position determination on dynamic soft reduction of continuous casting slabs based on force feedback model

  • 金 昕1,2,温 习1,2,史学亮3,刘大伟1,2,任廷志1,2
Author information +
文章历史 +

摘要

为了更加准确地判断连铸轻压下过程中板坯的液芯凝固终点位置,从而确定合理的压下位置以及压下区间,改善连铸板坯产品质量,通过分析凝固坯壳在轻压下过程中的力学行为特性,建立基于力反馈的板坯轻压下液芯凝固终点位置动态判定模型。利用模型计算得到轻压下扇形段各夹辊支反力以及总支反力随液芯凝固终点位置的变化规律,通过分析液芯凝固终点位置变化时各夹辊支反力以及总支反力的变化规律,提出基于力反馈模型判定液芯凝固终点位置的方法,并通过射钉试验验证了力反馈模型的准确性。

Abstract

During slab continuous casting soft reduction process,in order to determine solidification end position more accurately,to ensure the reasonable reduction position and reduction section and improve the quality of products of the continuous casting slabs,the mechanical behavior characteristics of slab solidification shell was analyzed. A dynamic liquid core solidification end position prediction mathematical model based on force feedback was developed. The variable laws of reaction force on pinch rolls and total pressure of segment with the changing of solidification end position of liquid core were calculated by the mathematical model. According to those variable laws,the methods for determining solidification end position of liquid core were presented based on force feedback mathematical model. And the accuracy of force feedback mathematical model is verified by pin-shooting experiment.

关键词

板坯连铸 / 轻压下 / 液芯凝固终点 / 力反馈模型 / 射钉法

Key words

continuous casting slab / soft reduction / liquid core solidification end position / force feedback model / pin-shooting method

图表

引用本文

导出引用
金昕, 温习, 史学亮, . 基于力反馈模型的板坯连铸液芯终点位置判定[J]. 钢铁, 2018, 53(6): 61-69 https://doi.org/10.13228/j.boyuan.issn0449-749x.20170584
JIN Xin, YUN Xi, SHI Hua-Liang, et al. Solidification end position determination on dynamic soft reduction of continuous casting slabs based on force feedback model[J]. Iron and Steel, 2018, 53(6): 61-69 https://doi.org/10.13228/j.boyuan.issn0449-749x.20170584

参考文献

[1]曹磊, 祭程, 杨吉林, 等. 轻压下帘线钢大方坯成分偏析特征及形成机制[J]. 钢铁, 2010, 45(08): 44-46+60.(CAO Lei, JI Cheng, YANG Ji-lin, et al. Characteristics and mechanism of segregation of tire cord steel bloom with soft reduction[J]. Iron and Steel, 2010, 45(08): 44-46+60.)
[2]林启勇, 朱苗勇. 钢种和断面对连铸板坯轻压下效率的影响[J]. 钢铁, 2010, 45(03): 32-37.(LIN Qi-yong, ZHU Miao-yong. Influence of steel grade and slab size on soft reduction efficiency in continuous casting slab[J]. Iron and Steel, 2010, 45(03): 32-37.)
[3]杨拉道, 张奇, 高琦, 等. 板坯连铸动态轻压下技术的理论与实践[J]. 铸造技术, 2012, 33(1): 55-58.(YANG La-dao, ZHANG Qi, GAO Qi, et al. Theory and practice of dynamic soft reduction technology for CCS[J]. Foundry Technology, 2012, 33(1): 55-58.)
[4]许志刚, 王新华, 周力, 等. 轻压下参数对连铸板坯半宏观偏析的影响[J]. 钢铁, 2014, 49(03): 36-41+45.(XU Zhi-gang, WANG Xin-hua, ZHOU Li, et al. Effects of soft reduction parameters on semi-macro segregation in continuously cast slab[J], Iron and Steel, 2014, 49(03): 36-41+45.)
[5]Kawawa T, Sato H, Miyahara S, et al. Determination of solidifying shell thickness of continuously cast slab by rivet pin shooting[J]. Tetsu to Hagan, 1974, 60(2): 206-216.
[6]许志强, 孟哲儒, 杜凤山, 等. 双辊薄带铸轧数值模拟研究现状及展望[J]. 燕山大学学报, 2014, 38(2): 95-101.(XU Zhi-qiang, MENG Zhe-ru, DU Feng-shan, et al. Current situation and prospect of twin-roll strip casting process numerical simulation[J]. Journal of Yanshan University, 2014, 38(2): 95-101.)
[7]Choudhary S K, Mazumdar D. Mathematical modelling of transport phenomena in continuous casting of steel[J]. ISIJ International, 1994, 34(7): 584-592.
[8]Louhenkilpi S, Laitinen E, Nieminen R. Real-Time simulation of heat transfer in continuous casting[J]. Metallurgical Transactions B, 1993, 24(4): 685-693.
[9]Luigi Morsut. Technological packages for the effective control of slab casting[J]. Metallurgical Plant and Technology International, 2003 (2): 44-51.
[10]宋东飞. LPC模型在动态轻压下控制中的应用[J]. 冶金自动化, 2005 (3): 57-59.(SONG Dong-fei. Application of LPC model in dynamic soft-reduction control[J]. Metallurgical Industry Automation, 2005 (3): 57-59.)
[11]Danilo G, Gustavo M, Rubens R, et al. Design features and start-up of the high-productivity 2-starand slab caster at Cosipa[J]. Metallurgical Plant and Technology International, 2004, 27 (4): 46-48.
[12]冯科. 板坯连铸机轻压下扇形段的设计特点[J]. 炼钢, 2006, 22 (2): 53.(FENG Ke. Design feature of soft-reduction segment of slab continuous caster[J]. Steelmaking, 2006, 22 (2): 53.)
[13]赵志毅, 康永林, 刘德民, 等. 连铸板坯凝固末端在线监测系统[J]. 北京科技大学学报, 2003, 25(5): 458-461.(ZHAO Zhi-yi, KANG Yong-lin, LIU De-min, et al. Liquid core on-line detecting system on a slab continuous casting machine[J]. Journal of University of Science and Technology Beijing, 2003, 25(5): 458-461.)
[14]Ogibayashi S, Yamada M, Yoshida Y, et al. Influence of roll bending on center segregation in continuously cast slabs[J]. ISIJ International, 1991, 31(12): 1408-1415.
[15]管克智, 周纪华, 朱其圣, 等. 热轧金属塑性变形阻力研究[J]. 北京钢铁学院学报, 1983, (1): 123-139.(GUAN Ke-zhi, ZHOU Ji-hua, ZHU Qi-sheng, et al. An experimental study of the resistance of plastic deformation of hot rolling metals[J]. Journal of University of Science and Technology Beijing, 1983, (1): 123-139.)

基金

河北省自然科学基金

PDF(1199 KB)

20

Accesses

0

Citation

Detail

段落导航
相关文章

/