为实现绿色低成本炼铁,梅钢拟利用厂内富余焦炉煤气进行高炉风口喷吹。为保证喷吹实际效果的准确性和合理性,优先进行高炉喷吹焦炉煤气数值模拟研究。首先基于梅钢2号高炉的原燃料条件采用多流体高炉数学模型对高炉喷吹焦炉煤气进行数值模拟研究,然后初步分析了梅钢2号高炉喷吹焦炉煤气的经济效益。结果表明,与未喷吹焦炉煤气相比,喷吹50 m3/t(Fe)焦炉煤气,炉内还原气浓度增加,炉料还原速度加快;产量增至4 740 t/d,增幅30.12%;焦比降至321.80 kg/t(Fe),降幅14.43%;碳排放减至355.93 kg/t(Fe),减幅8.61%;当焦炭价格为1 607元/t、焦炉煤气价格为0.774 9元/m3时(2016年11月梅钢提供),吨铁成本降低20.14元,每年因喷吹焦炉煤气节约焦炭7.79万t,年创综合经济效益5 115万元。综合考虑经济效益、节焦潜力、梅钢富氧能力和焦炉煤气富余量,梅钢2号高炉适宜的焦炉煤气喷吹量宜维持在50 m3/t(Fe)左右。
Abstract
In order to achieve the green and low cost ironmaking,Mei Steel will perform the BF operation with coke oven gas(COG) injection. And for insuring the effective injection,the mathematical modeling research of Mei Steel No. 2 BF with COG injection is researched. Firstly,based on the raw material and fuel conditions of Mei Steel No. 2 BF,the mathematical modeling of the BF operation with COG injection is carried out by multi-fluid blast furnace model. Secondly,the economic benefit after COG injection is also preliminarily analyzed. Compared with the base case of no COG injection,when the COG injection is 50 m3/t(Fe),the concentration of reducing gas in the BF increases and the reduction is accelerated;the production increases to 4 740 t/d(increases 30.12%);the coke rate decreases to 321.80 kg/t(Fe)(decreases 14.43%);the carbon emission decreases to 355.93 kg/t(Fe)(decreases 8.61%). On the base of the coke price of 1 607 RMB/t and the COG price of 0.774 9 RMB/m3(supplied by Mei Steel in Nov 2016),the cost of pig iron reduces 20.14 RMB/t,the saved coke for COG injection is 7.79 ten thousand tons per year,and the total economic benefit is 51.15 million RMB per year. Considering the economic benefit,the coke saving potential,the rich oxygen capacity,and the COG surplus of Mei Steel,it is recommended that the rational COG injection for Mei Steel No. 2 BF is maintained around 50 m3/t(Fe).
关键词
低碳炼铁 /
高炉 /
喷吹焦炉煤气 /
多流体高炉数学模型 /
经济效益
{{custom_keyword}} /
中图分类号:
TF531
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张守荣. 炼铁系统节能---我国钢铁工业21世纪技术进步的重点[J]. 钢铁. 2005, 40(5): 1.
ZHANG Shou-rong. Systematic energy saving in ironmaking – the priority to be paid in technological process of China’s steel industry in 21st century[J]. Iron and Steel. 2005, 40(5): 1.
[2] 蔡九菊,孙文强. 中国钢铁工业的系统节能和科学用能[J]. 钢铁. 2012, 47(5): 5.
CAI Jiu-ju, SUN Wen-qiang. China can use system energy saving of iron and steel industry and science[J]. Iron and Steel. 2012, 47(5): 5.
[3] 李新创,高升. 钢铁工业绿色发展途径探讨[J]. 工程研究-跨学科视野中的工程. 2017, 9(1): 19.
LI Xin-chuang, GAO Sheng. Discussion on green development path of iron and steel industry[J]. Journal of Engineering Studies. 2017, 9(1): 19.
[4] 刘绍敏. 河北钢铁业绿色产业链构建[J]. 开放导报. 2016, 184(1): 82.
LIU Shao-min. Construction of the green industrial chain in Hebei steel industry[J]. China Opening Journal. 2016, 184(1): 82.
[5] 殷瑞钰. 绿色制造与钢铁工业[J]. 钢铁. 2000, 35(6): 61.
YIN Rui-yu. Green manufacturing vs steel industry[J]. Iron and Steel. 2000, 35(6): 61.
[6] 郜学,尚海霞.中国钢铁工业“十二五”节能成就和“十三五”展望[J]. 钢铁. 2017, 52(7): 9.
GAO Xue, SHANG Hai-xia. Energy saving achievements of 12th Five-Year Program and prospect of 13th Five-Year Program for Chinese steel industry[J]. Iron and Steel. 2017, 52(7): 9.
[7] 徐匡迪. 低碳经济与钢铁工业[J]. 钢铁. 2010, 25(3): 1.
XU Kuang-di. Low carbon economy and iron and steel industry[J]. Iron and Steel. 2010, 25(3): 1.
[8] 刘文权. 低碳炼铁与低碳经济[J]. 炼铁. 2010, 29(5): 53.
LIU Wen-quan. Low carbon ironmaking and low carbon economy[J]. Ironmaking. 2010, 29(5): 53.
[9] 张春霞,王海凤,张寿荣,等. 中国钢铁工业绿色发展工程科技战略及对策[J]. 钢铁. 2015, 50(10): 1.
ZHANG Chun-xia, WANG Hai-feng, ZHANG Shou-rong, et al. Strategic study on green development of Chinese steel industry[J]. Iron and Steel. 2015, 50(10): 1.
[10] 王海风,张春霞,胡长庆,等. 钢铁企业焦炉煤气利用的一个重要发展方向[J]. 钢铁研究学报. 2008, 20(3): 1.
WANG Hai-feng, ZHANG Chun-xia, HU Chang-qing, et al. Important development trends of coke oven gas utilization in steel plant[J]. Journal of Iron and Steel Research. 2008, 20(3): 1.
[11] 白宗庆,白进,李文. 焦炉煤气综合利用及CO2[J]. 洁净煤技术. 2016, 22(1): 34.
BAI Zong-qing, BAI Jin, LI Wen. Utilization of coke oven gas in China and its potential for reduction of CO2 emission[J]. Clean Coal Technology. 2016, 22(1): 34.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}