凝固压下对大方坯中心致密性的影响

赵军普,刘 浏,饶金元

钢铁 ›› 2018, Vol. 53 ›› Issue (9) : 30-36.

欢迎访问《钢铁》官方网站!今天是 2025年7月29日 星期二
钢铁 ›› 2018, Vol. 53 ›› Issue (9) : 30-36. DOI: 10.13228/j.boyuan.issn0449-749x.20180026
炼钢

凝固压下对大方坯中心致密性的影响

  • 赵军普1,2,刘 浏1,饶金元3
作者信息 +

Effect of solidification reduction process on center compactness of continuous casting bloom

  • 赵军普1,2,刘 浏1,饶金元3
Author information +
文章历史 +

摘要

为了改善大方坯的中心致密性,研究了连铸凝固压下对铸坯中心缩孔的影响。采用热-弹-塑性模型计算了凝固压下时大方坯中心缩孔的变形规律。结果表明,在铸坯完全凝固后压下可有效提高中心致密性,其效果比相同变形量下的均热轧制提高了22.5%。随着压下量的增大,缩孔尺寸明显减小,但由于凝固压下变形量有限,大尺寸缩孔难以完全消除。为进一步消除缩孔,建议凝固末端轻压下速率提高到0.02 mm/s,或增大凝固后压下量。SA-213 T12大方坯采用凝固压下技术后大部分中心缩孔已被焊合,残留缩孔的最大尺寸由8减小到2 mm,同时缩孔数量降低了50%。

Abstract

In order to improve the center compactness of continuous casting bloom,the effect of post solidification reduction process on the center shrinkage cavity existing in the bloom was studied. The deformation behavior of shrinkage cavity during solidification reduction was analyzed using thermo-elastic-plastic model. The results revealed that the center compactness of bloom can be effectively improved when reduction technology was applied after complete solidification,and the effect is 22.5% higher than hot rolling under the same deformation. With the increase of reduction amount,the size of the center shrinkage cavity is significantly reduced. However,it is difficult to completely eliminate the large size shrinkage cavity due to the limited reduction amount of post solidification reduction. To further eliminate the shrinkage cavity,it is advisable to increase the soft reduction rate to 0.02 mm/s at the end of solidification to reduce the initial size of shrinkage cavities,or increase the post solidification reduction amount. Post solidification reduction technology was applied to the production of continuous casting bloom SA-213 T12. Experiment result shows that most of the center shrinkage cavities have been welded. The size of the remaining shrinkage cavities is reduced from 8 mm to 2 mm,and the number is reduced by 50%.

关键词

凝固压下 / 热-弹-塑性模型 / 中心缩孔

图表

引用本文

导出引用
赵军普, 刘浏, 饶金元. 凝固压下对大方坯中心致密性的影响[J]. 钢铁, 2018, 53(9): 30-36 https://doi.org/10.13228/j.boyuan.issn0449-749x.20180026
DIAO Jun-Pu, LIU Liu, RAO Jin-Yuan. Effect of solidification reduction process on center compactness of continuous casting bloom[J]. Iron and Steel, 2018, 53(9): 30-36 https://doi.org/10.13228/j.boyuan.issn0449-749x.20180026
中图分类号: TF777   

参考文献

[1] EL-Bealy M. Modeling of interdendritic strain and macrosegregation for dendritic solidification processes: Part I. Theory and experiments [J]. Metallurgy and Materials Transactions B, 2000, 31(2): 331-343
[2] Sivesson P, ?rtlund T, Widell B. Improvement of inner quality of continuously cast billets through thermal soft reduction and use of multivariate analysis of saved process variables [J]. Ironmaking & Steelmaking, 1996, 23(6): 504-511
[3] 橘高節生, 三浦康彰, 松岡幸弘, 等. 鋳片圧下装置の開発 ~連鋳鋳片の内部品質向上(センターポロシティ低減)技術の確立~[J]. 新日鉄住金エンジニアリング技報, 2012, 3: 2-6
[4] Suzuki K, Miyamoto T. Study on the formation of left double quote and right double quote segregation in steel ingot [J]. Transactions ISIJ, 1978, 18(2): 80-89
[5] 高橋忠義, 大笹憲一, 片山教幸. 鋼の連続鋳造における凝固遷移層の発達に関する数値シミュレーション[J]. 鉄と鋼, 1990, 76(5): 728-734
[6] 平城 正, 山中 章裕, 白井 善久, 等. 高級極厚鋼板用新連続鋳造技術(PCCS法)の開発[J]. まてりあ, 2009, 48(1): 20-22
[7] Kawamoto M. Recent development of steelmaking process in Sumitomo metals [J]. Journal of Iron and Steel Research, International, 2011, 18(S2): 28-35
[8] Chang H Y, Kwon O. Advanced continuous casting technologies for cost reduction and quality improvement [C]// Proceeding of the 4th International Conference on Continuous Casting of Steel in Developing Countries. Beijing, 2008: 52-58
[9] Chang H Y, Won Y M, Park J K, et al. Continuous cast slab and method for manufacturing the same [P]: US Patent, 8245760B2. 2012-08-21
[10] Takubo M, Matsuoka Y, Miura Y, et al. NSENGI's new developed bloom continuous casting technology for improving internal quality of special bar quality (NS bloom large reduction) [C]// Proceeding of 2015 technical innovation and fine production technology exchange meeting of continuous casting equipment. Xi’an, 2015: 307-318
[11] Kozlowski P F, Thomas B G, Azzi J A, et al. Simple constitutive equations for steel at high temperature [J]. Metallurgical Transactlons A, 1992, 23: 903-918
[12] Han T, Cheng C G, Mei J X, et al. Optimization of soft reduction process for continuous thick slab casting [J]. Advanced Materials Research, 2014, 881-883: 1558-1561
[13] Uehara M, Samarasekera, I V Brimacombe J K. Mathematical modelling of unbending of continuously cast steel slabs [J]. Ironmaking & Steelmaking, 1986, 13(3):138-153
[14] 林启勇. 连铸过程铸坯动态轻压下压下模型的研究与应用[D]. 沈阳: 东北大学, 2007: 71
[15] Jimbo I, Cramb A W. The density of liquid iron-carbon alloys [J]. Metallurgical and Materials Transactions B, 1993, 24(1): 5-10

基金

国家科技支撑计划项目

21

Accesses

0

Citation

Detail

段落导航
相关文章

/