晶界空位与碳原子对铁晶界力学性能的影响

肖少彬, 王薇, 刘天宇, 张琴, 吕知清

钢铁 ›› 2020, Vol. 55 ›› Issue (4) : 75-81.

PDF(6256 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月30日 星期三
PDF(6256 KB)
钢铁 ›› 2020, Vol. 55 ›› Issue (4) : 75-81. DOI: 10.13228/j.boyuan.issn0449-749x.20190318
钢铁材料

晶界空位与碳原子对铁晶界力学性能的影响

  • 肖少彬, 王薇, 刘天宇, 张琴, 吕知清
作者信息 +

Effects of vacancies and C atoms on mechanical properties of Fe grain boundary

  • 肖少彬, 王薇, 刘天宇, 张琴, 吕知清
Author information +
文章历史 +

摘要

为了从纳米尺度上探究与表征bcc-Fe的晶界变形行为,采用分子动力学方法分析了4种不同的bcc-FeΣ3晶界(Σ3(111)、Σ3(112)、Σ3(111)/(115)、Σ3(112)/(552))的拉伸与剪切变形过程,研究了晶界上空位和碳的原子分数对晶界拉伸和剪切性能的影响。结果表明,随着空位与碳原子所占晶界原子分数的增加,Σ3(112)晶界的拉伸应力-应变曲线屈服阶段逐渐消失。随着空位原子分数的升高,Σ3(111)晶界抗拉强度逐渐降低,而其余3种晶界抗拉强度也有不同程度的减小。含碳原子的Σ3(111)晶界抗拉强度有所增加,相反,其余3种晶界抗拉强度均低于原始无缺陷晶界。4种晶界的剪切强度均由于空位的存在或碳原子置换而明显减小。

Abstract

In order to explore and characterize the deformation behavior of bcc-Fe grain boundaries from the nanoscale,the tensile and shear deformation processes of four different bcc-Fe Σ3 grain boundaries,i.e. Σ3(111),Σ3(112),Σ3(111)/(115) and Σ3(112)/(552),are investigated by molecular dynamics simulation. The effect of the vacancies and C atoms with different atomic percents on the machanical properties of the four different grain boundaries are discussed. The results indicate that the tensile stress-strain curve yield stage of Σ3(112) grain boundary gradually disappears due to the increase of the atomic percent of the grain boundary occupied by vacancies and C atoms.The tensile strength of Σ3(111)grain boundary gradually decreases with the increases of the atomic percent of vacancies,and the tensile strength of the other three grain boundaries are reduced in different degree. The tensile strength of Σ3(111) grain boundary containing C atoms increases,however,the other three grain boundary tensile strengths are lower than the original defect-free grain boundaries. The shear strength of the four grain boundaries is significantly reduced by the presence of vacancies or the replacement of C atoms.

关键词

分子动力学 / 空位 / 应力-应变曲线 / 抗拉强度 / 剪切强度

Key words

molecular dynamics / vacancy / stress-strain curve / tensile strength / shear strength

图表

引用本文

导出引用
肖少彬, 王薇, 刘天宇, 张琴, 吕知清. 晶界空位与碳原子对铁晶界力学性能的影响[J]. 钢铁, 2020, 55(4): 75-81 https://doi.org/10.13228/j.boyuan.issn0449-749x.20190318
XIAO Shao-bin, WANG Wei, LIU Tian-yu, ZHANG Qin, LÜ Zhi-qing. Effects of vacancies and C atoms on mechanical properties of Fe grain boundary[J]. Iron and Steel, 2020, 55(4): 75-81 https://doi.org/10.13228/j.boyuan.issn0449-749x.20190318

参考文献

[1] Dimiduk D M,Uchic M D,Parthasarathy T A. Size-affected single-slip behavior of pure nickel microcrystals[J]. Acta Materialia,2005,53(15):4065.
[2] Brinckmann S,Kim J Y,Greer J R. Fundamental differences in mechanical behavior between two types of crystals at the nanoscale[J]. Physical Review Letters,2008,100(15):155502.
[3] Han W Z,Huang L,Ogata S,et al. From "smaller is stronger" to "size-independent strength plateau":Towards measuring the ideal strength of iron[J]. Advanced Materials,2015,27(22):3385.
[4] 张慧芳,肖振兴,周宇,等. 无镍高氮不锈钢弯曲疲劳裂纹萌生与扩展行为[J]. 钢铁,2017,52(10):89.(ZHANG Hui-fang,XIAO Zhen-xing,ZHOU Yu,et al. Bending fatigue crack initiation and propagation behaviors of a nickel free high nitrogen stainless steel[J]. Iron and Steel,2017,52(10):89.)
[5] 张慧芳,肖振兴,肖少彬,等. 奥氏体钢四点弯曲疲劳行为的数值模拟与试验[J]. 钢铁,2017,52(4):61.(ZHANG Hui-fang,XIAO Zhen-xing,XIAO Shao-bin,et al. Numerical simulation and experimental on four-point bending fatigue behavior of austenite steel[J]. Iron and Steel,2017,52(4):61.)
[6] 刘宝龙,张慧芳,肖振兴,等. 316L/Q345R热轧复合板界面组织演变及性能[J]. 钢铁,2017,52(5):72.(LIU Bao-long,ZHANG Hui-fang,XIAO Zhen-xing,et al. Microstructure evolution and properties of interface in 316L/Q345R hot rolled clad plate[J]. Iron and Steel,2017,52(5):72.)
[7] 吕知清,肖少彬,吴之博,等. 溶质元素晶界偏聚行为的研究现状[J]. 燕山大学学报,2019,43(6):471.(LÜ Zhi-qing,XIAO Shao-bin,WU Zhi-bo,et al. Research status of segregation behaviors of solute atoms on grain boundary[J]. Journal of Yanshan University,2019,43(6):471.)
[8] Babicheva R I,Dmitriev S V,Bai L,et al. Effect of grain boundary segregation on the deformation mechanisms and mechanical properties of nanocrystalline binary aluminum alloys[J]. Computational Materials Science,2016,117:445.
[9] SHANG J X,ZHAO X D,WANG F H,et al. Effects of Co and Cr on bcc Fe grain boundaries cohesion from first-principles study[J]. Computational Materials Science,2006,38(1):217.
[10] YANG R,ZHAO D L,WANG Y M,et al. Effects of Cr,Mn on the cohesion of the γ-iron grain boundary[J]. Acta Materialia,2001,49(6):1079.
[11] Braithwaite J S,Rez P. Grain boundary impurities in iron[J]. Acta Materialia,2005,53(9):2715.
[12] 曹建春,刘铖霖,高鹏,等. 钢中元素偏聚的研究现状及其发展趋势[J]. 钢铁,2019,54(6):11. (CAO Jian-chun,LIU Cheng-lin,GAO Peng,et al. Research status and development trend of elemental segregation in steel[J]. Iron and Steel,2019,54(6):11.)
[13] Wachowicz E,Kiejna A. Effect of impurities on grain boundary cohesion in bcc iron[J]. Computational Materials Science,2008,43(4):736.
[14] Wachowicz E,Ossowski T,Kiejna A. Cohesive and magnetic properties of grain boundaries in bcc Fe with Cr additions[J]. Physical Review B,2010,81(9):094104.
[15] Zhurkin E E,Hou M,Kuriplach J,et al. Grain boundary segregation in low Cr Fe-Cr alloys:The effect of radiation induced vacancies studied by metropolis Monte Carlo simulations[J]. Nuclear Inst and Methods in Physics Research B,2011,269(14):1679.
[16] Wang J L,Janisch R,Madsen G K H,et al. First-principles study of carbon segregation in bcc iron symmetrical tilt grain boundaries[J]. Acta Materialia,2016,115:259.
[17] 刘然,李长荣,师帅,等. 锆夹杂物对钢中铜元素非均质形核作用的理论分析[J]. 钢铁,2018,53(6):92. (LIU Ran,LI Chang-rong,SHI Shuai,et al. Theoretical analysis of effect of zirconic inclusions on heterogeneous nucleation of copper in steel[J]. Iron and Steel,2018,53(6):92.)
[18] 于洋,惠亚军,王畅,等. 高强IF钢第二相粒子的应变诱导析出行为[J]. 中国冶金,2018,28(7):13. (YU Yang,HUI Ya-jun,WANG Chang,et al. Strain-induced precipitation behavior of second phase particles in high strength IF steel[J]. China Metallurgy,2018,28(7):13.)
[19] HE X F,WU S,JIA L X,et al. Grain boundary segregation of substitutional solutes/impurities and grain boundary decohesion in BCC Fe[J]. Energy Procedia,2017,127:377.
[20] Boyle C,Carvillo P,Chen Y,et al. Grain boundary segregation and thermoelectric performance enhancement of bismuth doped calcium cobaltite[J]. Journal of the European Ceramic Society,2015,36(3):601.
[21] SONG S H,ZHAO Y,CUI Y,et al. Effect of grain boundary character distribution and grain boundary phosphorus segregation on the brittleness of an interstitial-free steel[J]. Materials Letters,2016,182:328.
[22] LejČek P,Šandera P,Horníková J,et al. On the segregation behavior of tin and antimony at grain boundaries of polycrystalline bcc iron[J]. Applied Surface Science,2015,363:140.
[23] Terentyev D,He X,Serra A,et al. Structure and strength of 〈110〉 tilt grain boundaries in bcc Fe:An atomistic study[J]. Computational Materials Science,2010,49(2):419.
[24] HE B,XIAO W,HAO W,et al. First-principles investigation into the effect of Cr on the segregation of multi-H at the Fe Σ3(111) grain boundary[J]. Journal of Nuclear Materials,2013,441(1/2/3):301.
[25] Babicheva R I,Dmitriev S V,Bachurin D V,et al. Effect of grain boundary segregation of Co or Ti on cyclic deformation of aluminium bi-crystals[J]. International Journal of Fatigue,2017,102:270.
[26] Tschopp M A,Mcdowell D L. Dislocation nucleation in Σ3 asymmetric tilt grain boundaries[J]. International Journal of Plasticity,2008,24(2):191.
[27] 黄丹,熊剑,郭乙木. BCC和FCC三维纳米单晶固体的拉伸剪切破坏[J]. 兵器材料科学与工程,2008,31(3):1.(HUANG Dan,XIONG Jian,GUO Yi-mu. Study on failure of nanoscale BCC and FCC monocrystalline bulks subjected to tension and shearing[J]. Ordnance Material Science and Engineering,2008,31(3):1.)
[28] 黄维,梁工英. Ag-Cu共晶合金非晶转变及晶化的分子动力学模拟[J]. 应用物理,2013,3(8):149.(HUANG Wei,LIANG Gong-ying. A molecular dynamics study on amorphous formation and crystallization of Ag-Cu eutectic alloys[J]. Applied Physics,2013,3(8):149.)
[29] Kotrechko S A,Filatov A V,Ovsjannikov A V. Molecular dynamics simulation of deformation and failure of nanocrystals of bcc metals[J]. Theoretical and Applied Fracture Mechanics,2006,45(2):92.
[30] Tschopp M A,Horstemeyer M F,Gao F,et al. Energetic driving force for preferential binding of self-interstitial atoms to Fe grain boundaries over vacancies[J]. Scripta Materialia,2011,64(9):908.
[31] Tschopp M A,Solanki K N,Gao F,et al. Probing grain boundary sink strength at the nanoscale:Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe[J]. Physical Review,2012,85(6):064108.

基金

河北省杰出青年基金资助项目(E2017203036)

PDF(6256 KB)

10

Accesses

0

Citation

Detail

段落导航
相关文章

/