热轧中厚板超快速冷却过程温度场数值模拟

孙明翰, 郑义, 曲春涛, 金世哲, 许志强, 杜凤山

钢铁 ›› 2020, Vol. 55 ›› Issue (3) : 50-57.

PDF(1095 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月30日 星期三
PDF(1095 KB)
钢铁 ›› 2020, Vol. 55 ›› Issue (3) : 50-57. DOI: 10.13228/j.boyuan.issn0449-749x.20190396
压力加工

热轧中厚板超快速冷却过程温度场数值模拟

  • 孙明翰, 郑义, 曲春涛, 金世哲, 许志强, 杜凤山
作者信息 +

Numerical simulation of temperature field in ultra-fast cooling process of hot rolled plate

  • 孙明翰, 郑义, 曲春涛, 金世哲, 许志强, 杜凤山
Author information +
文章历史 +

摘要

超快速冷却工艺作为热轧钢板生产的核心技术,对改善板材产品组织形态、提升产品性能具有重要意义。在中厚钢板的超快速冷却过程中,心部与表面之间的冷却速度差异使得钢板在厚度方向上形成内外温度差,而超快速冷却中钢板表面的换热机制较为复杂,两者综合提升了中厚板冷却机制的界定难度。为提升中厚板超快冷模型计算精度,完善其换热体系,建立了中厚钢板轧后超快速冷却过程中等效换热系数反求法的数学模型。该模型依托离散解析法,基于导热微分方程及物体正规阶段的状态特点,将求得的超越方程根转化为等效换热系数,并将此作为超快冷温度场模型的边界条件。在此基础上,构建了超快速冷却温度场仿真模型,验证了20 mm钢板超快速冷却机制下的温度场。结果表明,等效换热系数反求法的数学模型能够适用于中厚钢板的超快冷工艺。

Abstract

The ultra-rapid cooling process is the core technology for the production of hot-rolled steel sheets,which is of great significance for improving the structure of the plate products and improving the performance of the products. In the ultra-rapid cooling process of medium-thick steel plates,the difference in cooling speed between the core and the surface causes the steel plate to form an internal and external temperature difference in the thickness direction,but the heat transfer mechanism of the steel plate surface in the ultra-rapid cooling is complicated. Therefore,all of them increase the difficulty of defining the cooling mechanism of the plate. In order to improve the calculation accuracy of the ultra-fast cooling model of medium and heavy plates and improve its heat exchange system,this article establishes a mathematical model for the inverse method of equivalent heat transfer coefficient in the ultra-rapid cooling process of medium-thick steel plates after rolling. The model relies on the discrete analytical method,the thermal differential equation and the state characteristics of the normal phase of the object. The model transforms the obtained transcendental equation root into the equivalent heat transfer coefficient,and the result is used as the boundary condition of the ultra-fast cold temperature field model. On this basis, a super-fast cooling temperature field simulation model was constructed to verify the temperature field under the ultra-fast cooling mechanism of 20 mm steel plates. The results showed that the mathematical model of the inverse heat transfer coefficient inverse method could be applied to the ultra-fast cooling process of medium-thick steel plates.

关键词

热轧钢板 / 超快速冷却 / 等效换热系数 / 反求法

Key words

hot rolled steel plate / ultra-fast cooling / equivalent heat transfer coefficient / inverse method

图表

引用本文

导出引用
孙明翰, 郑义, 曲春涛, . 热轧中厚板超快速冷却过程温度场数值模拟[J]. 钢铁, 2020, 55(3): 50-57 https://doi.org/10.13228/j.boyuan.issn0449-749x.20190396
SUN Ming-han, ZHENG Yi, QU Chun-tao, et al. Numerical simulation of temperature field in ultra-fast cooling process of hot rolled plate[J]. Iron and Steel, 2020, 55(3): 50-57 https://doi.org/10.13228/j.boyuan.issn0449-749x.20190396

参考文献

[1] 刘旭辉,李光辉,刘振宇. 冷却路径对V-Ti微合金钢组织性能的影响[J]. 钢铁,2019,54(7):77. (LIU Xu-hui,LI Guang-hui,LIU Zhen-yu. Effects of cooling process on microstructure and mechanical properties in a V-Ti bearing steel[J]. Iron and Steel,2019,54(7):77.)
[2] 李成良,黄远坚,温志红. Q620D钢板连续冷却相变行为和回火工艺[J]. 钢铁,2018,53(4):78. (LI Cheng-liang,HUANG Yuan-jian,WEN Zhi-hong. Continuous cooling transformation behavior and tempering process of Q620D steel plate[J]. Iron and Steel,2018,53(4):78.)
[3] 侯晓英,毕永杰,郝亮. 热轧TRIP980钢微观组织及强化机制分析[J]. 钢铁,2019,54(4):63. (HOU Xiao-ying,BI Yong-jie,HAO Liang. Analysis on microstructure and strengthening mechanisms of hot-rolled TRIP980 steel[J]. Iron and Steel,2019,54(4):63.)
[4] 田勇,王丙兴,袁国. 基于超快冷技术的新一代中厚板轧后冷却工艺[J]. 中国冶金,2013,23(4):17.(TIAN Yong,WANG Bing-xing,YUAN Guo. New generation TMCP for plate mill based on ultra-fast cooling technology[J]. China Metallurgy,2013,23(4):17.)
[5] 张阔斌,侯蕾,王俊,等. 超快冷技术在唐钢中厚板生产线上的应用[J]. 轧钢,2018,35(5):67. (ZHANG Kuo-bin,HOU Lei,WANG Jun,et al. Application of ultra-fast cooling technology on medium plate production line of Tangsteel[J]. Steel Rolling,2018,35(5):67.)
[6] 任树洋,尹绍江,李行,等. 新一代中厚板制造关键技术在唐钢的应用[J]. 中国冶金,2019,29(9):60. (REN Shu-yang,YIN Shao-jiang,LI Hang,et al. Application of new generation key technology of medium and heavy plate manufacturing in Tangsteel[J]. China Metallurgy,2019,29(9):60.)
[7] 王国栋. 新一代控制轧制和控制冷却技术与创新的热轧过程[J]. 东北大学学报:自然科学版,2009,30(7):913.(WANG Guo-dong. New Generation TMCP and innovative hot rolling process[J]. Journal of Northeastern University:Natural Science,2009,30(7):913.)
[8] 王国栋. 新一代TMCP技术的发展[J]. 轧钢,2012,29(1):1.(WANG Guo-dong. Development of a new generation TMCP Technology[J]. Steel Rolling,2012,29(1):1.)
[9] 孙电强,李玉谦,成慧梅,等. 冷却工艺对Q550D钢组织性能的影响[J]. 轧钢,2019,36(1):41. (SUN Dian-qiang,LI Yu-qian,CHENG Hui-mei,et al. Effect of cooling process on microstructure and properties of Q550D steel[J]. Steel Rolling,2019,36(1):41.)
[10] 黄卫国,张子豪,张田. 沙钢3 500 mm宽厚板线控冷系统的应用[J]. 轧钢,2019,36(5):14. (HUANG Wei-guo,ZHANG Zi-hao,ZHANG Tian. Application of controlled cooling system of 3 500 mm heavy plate production line in Shagang[J]. Steel Rolling,2019,36(5):14.)
[11] 袁国,于明,王国栋. 热轧带钢超快速冷却过程的换热分析[J]. 东北大学学报:自然科学版,2006,27(4):406.(YUAN Guo,YU Ming,WANG Guo-dong. Heat transfer of hot strip during ultra fast cooling[J]. Journal of Northeastern University:Natural Science,2006,27(4):406.)
[12] Prieto M M,Ruiz L S,Menendez J A. Thermal performance of numerical model of hot strip mill runout table[J]. Ironmaking and Steelmaking,2001,28(6):474.
[13] Cox S D,Hardy S J,Parker D J. Influence of runout table operation setup on hot strip quality,subject to initial strip condition:Heat transfer issues[J]. Ironmaking and Steelmaking,2001,28(5):363.
[14] 温旭,姜华,曹进. 高炉炉缸凝铁层导热系数测定及传热模型修正[J]. 钢铁研究学报,2019,31(4):347. (WEN Xu,JIANG Hua,CAO Jin. Measurement of thermal conductivity for iron skull of blast furnace hearth and modification of heat transfer model[J]. Journal of Iron and Steel Research,2019,31(4):347.)
[15] 付天亮,邓想涛,韩钧,等. 钢板超快速冷却条件下换热实验研究[J]. 东北大学学报:自然科学版,2017,38(10):1399.(FU Tian-liang,DENG Xiang-tao,HAN Jun,et al. Experimental studies on heat transfer of ultra fast cooling for steel plate[J]. Journal of Northeastern University:Natural Science,2017,38(10):1399.)
[16] 汪贺模,蔡庆伍,余伟,等. 水流量对热轧钢板层流冷却过程对流换热系数的影响[J]. 北京科技大学学报,2012,34(12):1421.(WANG He-mo,CAI Qing-wu,YU Wei,et al. Effect of water flow rate on the heat transfer coefficient of a hot steel plate during laminar flow cooling[J]. Journal of University of Science and Technology Beijing,2012,34(12):1421.)
[17] 童朝南,高宇德. 钢板水冷过程换热系数建模的一种实用方法[J]. 钢铁,2011,46(7):50.(TONG Chao-nan,GAO Yu-de. A useful method of building the heat transfer coefficient model in steel cooling process[J]. Iron and Steel,2011,46(7):50.)
[18] 陈小林,王国栋. 中厚板超快速冷却条件下的温度模型[J]. 钢铁,2013,48(10):46.(CHEN Xiao-lin,WANG Guo-dong. Temperature model under the plate ultra fast cooling condition[J]. Iron and Steel,2013,48(10):46.)
[19] 杨世铭,陶文铨. 传热学[M]. 4版. 北京:高等教育出版社,2006.(YANG Shi-ming,TAO Wen-quan. Heat Transfer[M]. 4th Ed. Beijing:Higher Education Press,2006.)
[20] 赵镇南. 传热学[M]. 北京:高等教育出版社,2002.(ZHAO Zhen-nan. Heat Transfer[M]. Beijing:Higher Education Press,2002.)
[21] 张靖周,常海萍. 传热学[M]. 北京:科学出版社,2009.(ZHANG Jing-zhou,CHANG Hai-ping. Heat Transfer[M]. Beijing:China Science Publishing and Media Ltd,2009.)
[22] Kim H K,Oh S I. Evaluation of heat transfer coefficient during heat treatment by inverse analysis[J]. Journal of Materials Processing Technology,2001,112(2):157.
[23] 盖格,波里尔,魏季和. 冶金中的传热传质现象[M]. 北京:冶金工业出版社,1981.(GAI Ge,BO Li-er,WEI Ji-he. Heat and Mass Transfer in Metallurgy[M]. Beijing:Metallurgical Industry Press,1981.)

基金

国家自然科学基金重点资助项目(U1560206)

PDF(1095 KB)

46

Accesses

0

Citation

Detail

段落导航
相关文章

/