硅对铁素体耐热不锈钢组织与性能的影响

张英波, 邹德宁, 王泉生, 张晓明, 李雨浓

钢铁 ›› 2021, Vol. 56 ›› Issue (3) : 71-76.

PDF(3297 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月29日 星期二
PDF(3297 KB)
钢铁 ›› 2021, Vol. 56 ›› Issue (3) : 71-76. DOI: 10.13228/j.boyuan.issn0449-749x.20200319
钢铁材料

硅对铁素体耐热不锈钢组织与性能的影响

  • 张英波1,2, 邹德宁1, 王泉生2, 张晓明2, 李雨浓1
作者信息 +

Effect of silicon on microstructure and properties of ferritic heat-resistant steel

  • 张英波1,2, 邹德宁1, 王泉生2, 张晓明2, 李雨浓1
Author information +
文章历史 +

摘要

18Cr-Al-Si铁素体耐热不锈钢作为一种结构连接件的新型材料,主要应用于超(超)临界火力发电领域。为了明确硅含量对该钢组织和性能的影响,以18Cr-Al-Si铁素体耐热不锈钢为成分基础,施以添加2组不同成分的硅含量,通过室温拉伸和高温氧化等试验方法,同时借助金相显微镜(OM)、扫描电子显微镜(SEM)和X射线衍射仪(XRD)等表征手段,对不同硅含量试验钢组织和性能进行了系统分析。结果表明,硅含量的增加会细化铁素体的晶粒尺寸并增加M23C6碳化物的数量,试验钢的抗拉强度和屈服强度升高,伸长率下降,断裂方式由韧性断裂向韧-脆混合型断裂方式转变;1.35Si试验钢氧化增重较大,因其钢中析出的M23C6碳化物较多,减少了固溶于基体及形成氧化膜的Cr含量,降低了其抗高温氧化性。

Abstract

The 18Cr-Al-Si ferritic heat-resistant stainless steel as a new type of structural connection material is mainly used in the field of supercritical or ultra-supercritical thermal power generation. In order to clarify the influence of Si content on the structure and properties of this steel,based on 18Cr-Al-Si ferritic heat-resistant stainless steel,the Si content of two groups of different components is added.Through the test methods such as room temperature tensile test and high temperature oxidation test,meanwhile,with the help of metallurgical microscope(OM),scanning electron microscope (SEM) and X-ray diffractometer (XRD) and other characterization methods,the structure and properties of different Si content test steels were systematically analyzed. The results show that the increase of Si content will refine the grain size of ferrite and increase the amount of M23C6,the tensile strength and yield strength of the test steel will increase,and the elongation will decrease. The fracture mode will change from ductile to tough-brittle mixed mode. 1.35Si steel has greater mass gain,this is because more M23C6 carbides are precipitated in the steel,thereby reducing the content of Cr dissolved in the matrix and forming the oxide film,and decreasing its high-temperature oxidation resistance.

关键词

18Cr-Al-Si / 铁素体 / 耐热不锈钢 / Si / 组织 / 性能 / 碳化物

Key words

18Cr-Al-Si / ferritic / heat-resistant stainless steel / Si / microstructure / property / carbide

图表

引用本文

导出引用
张英波, 邹德宁, 王泉生, . 硅对铁素体耐热不锈钢组织与性能的影响[J]. 钢铁, 2021, 56(3): 71-76 https://doi.org/10.13228/j.boyuan.issn0449-749x.20200319
ZHANG Ying-bo, ZOU De-ning, WANG Quan-sheng, et al. Effect of silicon on microstructure and properties of ferritic heat-resistant steel[J]. Iron and Steel, 2021, 56(3): 71-76 https://doi.org/10.13228/j.boyuan.issn0449-749x.20200319

参考文献

[1] Abe F.Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 ℃ and above[J]. Engineering,2015,1(2):211.
[2] LU H,GUO H,LUO Y,et al. Microstructural evolution,precipitation and mechanical properties of hot rolled 27Cr-4Mo-2 Ni ferritic steel during 800 ℃ aging[J]. Materials and Design,2018,160:999.
[3] LUO H,SU H,LI B,et al. Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment[J]. Appllied Surface Science,2018,439:232.
[4] 李阳,王琦,张威,等. 热轧工艺对高铝铁素体耐热不锈钢组织性能的影响[J]. 轧钢,2020,37(2):23.(LI Yang,WANG Qi,ZHANG Wei,et al. Effect of hot rolling process on microstructure and properties of ferritic heat-resistant stainless steel with high aluminum content[J]. Steel Rolling,2020,37(2):23.)
[5] 邹德宁,张英波,韩英,等.退火温度对铁素体耐热钢 X10CrAlSi18组织性能的影响[J]. 金属热处理,2017,42(11):133.(ZOU De-ning,ZHANG Ying-bo,HAN Ying,et al. Effect of annealing temperature on microstructure and properties of X10CrAlSi18 heat-resistant ferritic stainless steel[J]. Heat Treatment of Metals,2017,42(11):133.)
[6] ZOU D,ZHOU Y,ZHANG X,et al. High temperature oxidation behavior of a high Al-containing ferritic heat-resistant stainless steel[J]. Materials Characterization,2018,136:435.
[7] ZHOU Y,ZOU D,PANG Y,et al. Comparative study on the oxidation behavior of austenitic and ferritic heat-resistant stainless steels at high temperatures[J]. JOM,2019,71(10):1.
[8] ZHANG Y,ZOU D,WEI T,et al. Microstructural evolution and precipitation behavior of the 0.1C-18Cr-1Al-1Si ferritic heat-resistant stainless steel during hot deformation[J]. Materials Research Express,2020,7:036513.
[9] MAO H,QI X,CAO J,et al. Effect of Si on high temperature oxidation of 30Cr13 stainless steel[J]. Journal of Iron and Steel Research,International,2017,24(5):561.
[10] 毛宏焕,胡潘,杨弋涛. Si含量对30Cr13不锈钢组织与力学性能的影响[J]. 金属热处理,2016,41(5):78.(MAO Hong-huan,HU Pan,YANG Yi-tao. Effect of Si content on microstructure and properties of 30Cr13 stainless steel[J]. Heat Treatment of Metals,2016,41(5):78.)
[11] 宋伊,喇培清,孟倩,等. Al对铸造310S不锈钢组织和力学性能的影响[J]. 特种铸造及有色合金,2018,38(6):592.(SONG Yi,LA Pei-qing,MENG Qian,et al. Effect of Al content on microstructure and mechanical properties of casting 310S stainless steel[J]. Special Casting and Nonferrous Alloys,2018,38(6):592.)
[12] XU Y,ZHANG X,FAN L,et al. Improved oxidation resistance of 15wt% Cr ferritic stainless steels containing 0.08-2.45wt% Al at 1 000 ℃ in air[J]. Corrosion Science,2015,100(11):311.
[13] 喇培清,李玉峰,刘闪光,等. Al元素对316L不锈钢组织和室温力学性能的影响[J]. 钢铁,2010,45(5):71.(LA Pei-qing,LI Yu-feng,LIU Shan-guang,et al. Effect of aluminum on microstructure and mechanical properties of 316L steel[J]. Iron and Steel,2010,45(5):71.)
[14] 张敏娟,郑宏光,张小农,等. 铝对铁素体不锈钢的组织和力学性能的影响[J]. 热加工工艺,2011,20:62.(ZHANG Min-juan,ZHENG Hong-guang,ZHANG Xiao-nong,et al. Effect of aluminum on the structure and mechanical properties of ferritic stainless steel[J]. Hot Working Technology,2011,20:62.)
[15] 李伟,秦春霞,何国国. Al含量对316L不锈钢显微组织和力学性能的影响[J]. 铸造技术,2014(11):98.(LI Wei,QIN Chun-xia,HE Guo-guo. Effect of Al content in stainless steel 316L on microstructures and mechanical properties[J]. Foundry Technology,2014(11):98.)
[16] Basabe V V,Szpunar J A. Growth rate and phase composition of oxide scales during hot rolling of low carbon steel[J]. ISIJ International,2004,44(9):1554.
[17] 程磊,孙彬,杜重洋. Fe-Cr钢在空气中的氧化行为[J]. 钢铁,2020,55(7):120.(CHENG Lei,SUN Bin,DU Chong-yang. Oxidation behavior of Fe-Cr steel in air[J]. Iron and Steel,2020,55(7):120.)
[18] 孙彬,尤宏广,郝明欣. 0.09C-0.5Mn-0.22/1.9Si钢的高温氧化动力学[J]. 钢铁,2018,53(9):53.(SUN Bin,YOU Hong-guang,HAO Ming-xin. Kinetics of high temperature oxidation of 0.09C-0.5Mn-0.22/1.9Si steel[J]. Iron and Steel,2018,53(9):53.)
[19] Behnamian Y,Mostafaei A,Kohandehghan A,et al. A comparative study of oxidescales grown on stainless steel and nickel-based superalloys in ultra-high temperature supercritical water at 800 ℃[J].Corrosion Science,2016,106:188.
[20] WEI L,ZHENG J,CHEN L,et al. High temperature oxidation behavior of ferritic stainless steel containing W and Ce[J]. Corrosion Science,2018,142:79.
[21] ZHENG Z,WANG S,LONG J,et al. Effect of rare earth elements in high temperature oxidation behavior of austenitic steel[J]. Corrosion Science,2020,164:108359.

基金

国家自然科学基金面上基金资助项目(51774226); 山西省科技重大专项资助项目(20181101016,20191102006); 陕西省重点研发计划资助项目(2018ZDXM-GY-149)

PDF(3297 KB)

18

Accesses

0

Citation

Detail

段落导航
相关文章

/