为了探究不同铝含量对X10CrAlSi18铁素体耐热不锈钢高温氧化行为的影响,采用恒温氧化方法对0.63%Al 和1.06%Al(质量分数)两组钢在700 ℃空气下进行高温氧化研究,测定和计算了氧化增重和平均氧化速率,观察分析了氧化形貌与氧化物相组成。结果表明,两组钢均达到了完全抗氧化级别,但1.06%Al钢的氧化增重和氧化速率均小于0.63%Al钢,表现出较好的抗高温氧化性;两组钢氧化膜均由3层组成,内层为Al2O3和SiO2,中间层为Cr2O3和Fe2O3,外层则为MnCr2O4和FeMn2O4;随着铝含量的增加,氧化膜较为连续、致密,且与基体之间附着性较好,同时内氧化明显减少。
Abstract
In order to explore the effects of Al content on the high-temperature oxidation behavior of X10CrAlSi18 ferritic heat-resistant stainless steel,the isothermal oxidation method was used to conduct high-temperature oxidation study on two steels of 0.63% Al and 1.06%Al at 700 ℃ in air. The oxidation mass gain and average oxidation rate were measured and calculated,and the oxidation morphology and oxide phase composition were observed and analyzed. The results show that both of the two steels have reached the complete oxidation resistance level,but the average oxidation mass gain and average oxidation rate of 1.06%Al steel are less than 0.63%Al steel,which showing a good high-temperature oxidation resistance;The oxide films of the two steels are composed of three layers,the inner layer is Al2O3 and SiO2,the middle layer is Cr2O3 and Fe2O3,and the outer layer is MnCr2O4and FeMn2O4;With the increase of Al content,the oxide film is more continuous,dense,and has better adhesion to the substrate,while the internal oxidation is significantly reduced.
关键词
X10CrAlSi18铁素体耐热不锈钢 /
铝含量 /
高温氧化 /
氧化膜 /
内氧化
{{custom_keyword}} /
Key words
X10CrAlSi18 ferritic heat-resistant stainless steel /
Al content /
high-temperature oxidation /
oxide film /
internal oxidation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] XIN L,JUN S,YUN B. High-temperature oxidation behavior of ferritic stainless steel containing molybdenum[J]. Journal of Iron and Steel Research,International,2013,20(5):54.
[2] Tavares S S M,JA de Souza,Herculano L F G,et al. Microstructural,magnetic and mechanical property changes in an AISI 444 stainless steel aged in the 560 ℃ to 800 ℃ range[J]. Materials Characterization,2008,59:112.
[3] de Abreu H F G,Bruno A D S,Tavares S S M,et al.Effect of high temperature annealing on texture and microstructure on an AISI-444 ferritic stainless steel[J]. Materials Characterization,2006,57:342.
[4] Kvernes I,Oliveira M,Kofstad P. High temperature oxidation of Fe-13Cr-xAl alloys in air H2O vapour mixtures[J]. Corrosion Science,1977,17:237.
[5] Abe F. Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 ℃ and above[J]. Engineering,2015,1(2):211.
[6] Masuyama F. History of power plants and progress in heat resistant steels[J]. ISIJ International,2001,41:612.
[7] MAO H,QI X,CAO J,et al. Effect of Si on high temperature oxidation of 30Cr13 stainless steel[J]. Journal of Iron and Steel Research,International,2017,24(5):561.
[8] 毛宏焕,胡潘,杨弋涛. Si含量对30Cr13不锈钢组织与力学性能的影响[J]. 金属热处理,2016,41(5):78.(MAO Hong-huan,HU Pan,YANG Yi-tao. Effect of Si content on microstructure and properties of 30Cr13 stainless steel[J]. Heat Treatment of Metals,2016,41(5):78.)
[9] Fujikawa H. Newcomb S B. High temperature oxidation behaviour of high Al content ferritic and austenitic stainless steels with and without rare-earth element addition[J]. Oxidation of Metals,2012,77:85.
[10] CHENG X,JIANG Z,WEI D,et al. Characteristics of oxide scale formed on ferritic stainless steels in simulated reheating atmosphere[J]. Surface and Coatings Technology,2014,258:257.
[11] 孙彬,尤宏广,郝明欣. 0.09C-0.5Mn-0.22/1.9Si钢的高温氧化动力学[J]. 钢铁,2018,54(9):53.(SUN Bin,YOU Hong-guang,HAO Ming-xin. High-temperature oxidation kinetics of 0.09C-0.5Mn-0.22/1.9Si steel[J]. Iron and Steel,2018,54(9):53.)
[12] 魏统宇, 邹德宁, 张英波, 等. 铝对高铝铁素体耐热钢组织与性能的影响[J]. 钢铁, 2020, 55(6): 80. (WEI Tong-yu, ZOU De-ning, ZHANG Ying-bo, et al. Effect of aluminum on microstructure and properties of high alumina ferritic heat resistant steel[J]. Iron and Steel, 2020, 55(6): 80.)
[13] 李阳,张威,王琦,等. 铁素体耐热不锈钢0.1C-18Cr-1Al-1Si铸造合金析出相研究[J]. 铸造技术,2019,40(6):540.(LI Yang,ZHANG Wei,WANG Qi,et al. Research on precipitation phase of 0.1C-18Cr-1Al-1Si cast alloy of ferrite heat-resistant stainless steel[J]. Foundry Technology,2019,40(6):540.)
[14] ZHANG Y,ZOU D,WEI T,et al. Microstructural evolution and precipitation behavior of the 0.1C-18Cr-1Al-1Si ferritic heat-resistant stainless steel during hot deformation[J]. Materials Research Express,2020,7:036513.
[15] 郭宏钢,李阳,张威. 热处理对0.1C-18Cr-1Al-1Si铁素体耐热钢力学性能的影响[J]. 热加工工艺,2020(18):128.(GUO Hong-gang,LI Yang,ZHANG Wei. Effect of heat treatment on mechanical properties of 0.1C-18Cr-1Al-1Si ferritic heat-resistant steel[J]. Hot Working Technology,2020(18):128.)
[16] ZHANG Y,ZOU D,WANG Y,et al. Hot deformation characteristic and optimization of processing parameters for 0.1C-18Cr-1Al-1Si ferritic heat resistant stainless steel[J]. Materials Transactions,2020,61:1396.
[17] 邹德宁,张英波,韩英,等.退火温度对铁素体耐热钢 X10CrAlSi18组织性能的影响[J]. 金属热处理,2017,42(11):133.(ZOU De-ning,ZHANG Ying-bo,HAN Ying,et al. Effect of annealing temperature on microstructure and properties of X10CrAlSi18 heat-resistant ferritic stainless steel[J]. Heat Treatment of Metals,2017,42(11):133.)
[18] 程磊,孙彬,杜重洋. Fe-Cr钢在空气中的氧化行为[J]. 钢铁,2020,55(7):120.(CHENG Lei,SUN Bin,DU Chong-yang. Oxidation behavior of Fe-Cr steel in air[J]. Iron and Steel,2020,55(7):120.)
[19] 喇培清,李玉峰,刘闪光. 铝对310S耐热钢高温抗氧化性能的影响研究[J]. 钢铁,2011,46(1):66.(LA Pei-qing,LI Yu-feng,LIU Shan-guang. The effect of aluminum on the oxidation resistance of 310S heat resistant steel at high temperature[J]. Iron and Steel,2011,46(1):66.)
[20] Kadiri H E,Molins R,Bienvenu Y,et al. Abnormal high growth rates of metastable aluminas on FeCrAl alloys[J]. Oxidation of Metals,2005,64(1/2):63.
[21] ZOU D,ZHOU Y,ZHANG X,et al. High temperature oxidation behavior of a high Al-containing ferritic heat-resistant stainless steel[J]. Materials Characterization,2018,136:435.
[22] He L F,Roman P,Leng B,et al. Corrosion behavior of an alumina forming austenitic steel exposed to supercritical carbon dioxide[J]. Corrosion Science,2014,82:67.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金面上资助项目(51774226); 山西省科技重大专项资助项目(20181101016, 20191102006); 陕西省重点研发计划资助项目(2018ZDXM-GY-149)
{{custom_fund}}