顶底复合吹炼转炉炼钢法是当下主流的炼钢方法,底部供气元件的种类、支数、排布方式和底吹供气强度直接影响着转炉熔池的混匀效果,合理的流场不仅可以降低生产成本,更能缩短冶炼周期,增加企业效益。基于冷态水模拟以及CFD数值模拟手段各自的研究特点,以某钢厂300 t转炉为原型,将不同底吹条件下熔池的混匀时间、死区以及弱流区体积作为评判依据,对300 t转炉的底枪排布方式、底吹供气模式(非均匀供气和均匀供气)以及底吹供气强度进行了系统研究,研究结果表明,当底枪排布位置由0.3D(D为炉底直径)到0.5D,底吹系统对炉壁处钢液的搅拌能力明显增强,但熔池内死区以及弱流区体积却会明显增加,使得整个熔池混匀时间增长;在对适宜底吹强度研究发现,当熔池底吹强度的临界值为0.28 m3/(t·min),此底吹强度下对熔池的搅拌效果最好;底吹系统对熔池的搅拌效果会随着供气模式的不同而改变,当底吹流量分配为2:1时,底吹系统对熔池的搅拌效果最佳,均匀供气模式(1:1)次之,而当分配比为3:1和4:1时,由于熔池的大流量侧供气强度相对较大,会极大影响底吹系统对熔池的搅拌效果。
Abstract
The top and bottom composite blowing converter steelmaking method is the mainstream steelmaking method at present. The type, number, arrangement mode and bottom blowing gas supply intensity of the bottom gas supply element directly affect the mixing effect of the converter molten pool. The reasonable flow field can not only reduce the production cost, but also shorten the smelting cycle and increase the enterprise benefit. Based on the research characteristics of cold water simulation and CFD numerical simulation, a 300 t converter in a steel plant was taken as the prototype, and the mixing time, dead zone and weak flow zone volume of the molten pool under different bottom blowing conditions were evaluated. The bottom lance arrangement, bottom blowing gas supply mode (non-uniform gas supply and uniform gas supply), and bottom blowing gas supply intensity of 300 t converter are systematically studied. The results show that when the position of the bottom lance is from 0.3D (D is the diameter of furnace bottom) to 0.5D, the stirring capacity of the bottom blowing system on molten steel at the furnace wall is obviously enhanced, but the volume of the dead zone and weak flow zone in the molten pool increases obviously, which makes the mixing time of the whole bath increase. It is found that when the critical value of bottom blowing strength is 0.28 m3 / (t·min), the stirring effect is the best. The stirring effect of the bottom blowing system on the molten pool will change with the different gas supply modes. When the bottom blowing flow distribution is 2:1, the bottom blowing system has the best stirring effect, followed by the uniform gas supply mode (1:1). When the distribution ratio is 3:1 and 4:1, the stirring effect of the bottom blowing system on the molten pool will be greatly affected due to the relatively large gas supply intensity on the large flow side of the bath.
关键词
大型转炉 /
数值模拟 /
冷态水模拟 /
底吹系统 /
转炉流场
{{custom_keyword}} /
Key words
large converter /
numerical simulation /
cold water simulation /
bottom blowing system /
converter flow field
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨文远, 冯超, 王明林,等. 大型转炉高供氧强度吹炼的水模实验[J]. 钢铁研究学报, 2017, 29(10):807.(YANG Wen-yuan, FENG Chao, WANG Ming-lin, et al. Water model experiment of high oxygen intensity blowing in large converter [J]. Journal of Iron and Steel Research, 2017, 29(10):807.)
[2] 蔡俊,曾加庆,梁强. 复吹转炉顶吹枪位与非均衡底吹搅拌的水模拟[J]. 中国冶金, 2019, 29(10): 26.(CAI Jun,ZENG Jia-qing,LIANG Qiang. Water simulation of combined blowing converter for top lance level and non equilibrium bottom blowing stirring[J]. China Metallurgy, 2019, 29(10): 26.)
[3] 杨文远, 王丽丽, 肖尊湖,等. 转炉炼钢氧气压力的选择[J]. 钢铁, 2014, 49(11):36.(YANG Wen-yuan, WANG Li-li, XIAO Zun-hu, et al. Selection of oxygen pressure in converter steelmaking [J]. Iron and Steel, 2014,49(11): 36.)
[4] 薛瑞, 张燕超, 张彩军, 等. 转炉底吹供气方式对熔池混匀效果的数值模拟[J]. 中国冶金, 2020, 30(3): 13.(XUE Rui, ZHANG Yan-chao, ZHANG Cai-jun, et al. Numerical simulation of influence of bottom blowing gas supply mode on converter mixing effect[J]. China Metallurgy, 2020, 30(3):13.)
[5] 杨文远, 崔健, 蒋晓放,等. 大型转炉复吹技术的研究[J]. 钢铁, 2011, 46(5):1.(YANG Wen-yuan, CUI Jian, JIANG Xiao-fang, et al. Study on combined blowing technology of large converter [J]. Iron and Steel, 2011,46(5): 1.)
[6] 汪成义, 杨利彬, 曾加庆. 大型转炉顶底复吹混合效果模拟[J]. 钢铁, 2016, 51(10):15.(WANG Cheng-yi, YANG Li-bin, ZENG Jia-qing. Simulation of mixing effect of top and bottom combined blowing in large converter[J]. Iron and Steel, 2016,51(10): 15.)
[7] 靳任杰,陈卫强, 常海, 等. 300 t转炉底吹冷态模型试验研究[J]. 冶金信息导刊, 2018(5):25.(JIN Ren-jie, CHEN Wei-qiang, CHANG Hai, et al. Study on cold model test of 300 t converter with bottom blowing[J]. Metallurgical Information Guide, 2018 (5): 25.)
[8] WU Wen-jie, YU Hui-xiang, WANG Xin-hua, et al.Optimization on bottom blowing system of a 210 t converter[J]. Journal of Iron and Steel Research, International, 2015,22(5):68.
[9] 王多刚,程乃良. 250吨转炉底吹对熔池搅拌的影响研究[J]. 过程工程学报,2020(9):678.(WANG Duo-gang, CHENG Nai-liang. Study on the effect of bottom blowing on bath stirring in 250 t converter [J]. Journal of Process Engineering, 2020 (9): 678.)
[10] 白瑞国, 吕明,朱荣,等. 150 t转炉喷粉提钒的水模拟研究[J]. 钢铁, 2012, 47(10):34.(BAI Rui-guo, LÜ Ming, ZHU Rong, et al. Water simulation study on vanadium extraction by powder injection in 150 t converter [J]. Iron and Steel, 2012,47(10): 34.)
[11] 包丽明, 刘坤, 吕国成,等. 转炉氧枪顶吹工艺的水力学模拟[J]. 特殊钢, 2007, 28(5):13.(BAO Li-ming, LIU Kun, LÜ Guo-cheng, et al. Hydraulic simulation of oxygen lance top blowing process in converter [J]. Special Steel, 2007,28(5): 13.)
[12] 张燕超, 张彩军, 王博,等. 高马赫数氧枪枪位对100 t转炉自动炼钢熔池流速的影响[J]. 炼钢, 2019, 35(2):1.(ZHANG Yan-chao, ZHANG Cai-jun, WANG Bo, et al. Influence of high Mach number oxygen lance position on molten pool flow rate in automatic steelmaking of 100 t converter [J]. Steelmaking, 2019, 35(2): 1.)
[13] 张燕超, 张彩军, 朱立光,等. 高供氧压力下高马赫数氧枪数值模拟[J]. 钢铁, 2019, 54(5):32.(ZHANG Yan-chao, ZHANG Cai-jun, ZHU Li-guang, et al. Numerical simulation of high Mach number oxygen lance under high oxygen supply pressure [J]. Iron and Steel, 2019,54(5): 32.)
[14] 胡绍岩, 朱荣, 董凯. 炼钢温度下复吹转炉流场的数值模拟研究[J]. 工程科学学报, 2018, 40(s1):108.(HU Shao-yan, ZHU Rong, DONG Kai. Numerical simulation of flow field in combined blown converter at steelmaking temperature [J]. Journal of Engineering Science, 2018,40(s1): 108.)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(51974130); 河北省自然科学基金资助项目(1152001); 河北省博士研究生创新资助项目(CXZZBS2020133)
{{custom_fund}}