Custom 450钢热加工图及显微组织分析

吕建平, 王晓辉, 刘振宝, 金青林

钢铁 ›› 2021, Vol. 56 ›› Issue (6) : 112-119.

PDF(3702 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月29日 星期二
PDF(3702 KB)
钢铁 ›› 2021, Vol. 56 ›› Issue (6) : 112-119. DOI: 10.13228/j.boyuan.issn0449-749x.20200612
钢铁材料

Custom 450钢热加工图及显微组织分析

  • 吕建平1,2, 王晓辉2, 刘振宝2, 金青林1
作者信息 +

Hot processing map and corresponding microstructural analysis of Custom 450 stainless steel

  • 吕建平1,2, 王晓辉2, 刘振宝2, 金青林1
Author information +
文章历史 +

摘要

为了探究Custom 450高强度不锈钢最佳的热变形区间以指导实际生产过程的工艺参数设计,利用Gleeble-3800热模拟试验机在变形温度为900~1 200 ℃、应变速率为0.01~10 s-1的条件下开展了热压缩试验,探讨了Prasad和Murty两种失稳判据在Custom 450钢中的适应性,确定了最佳的热变形区间和塑性失稳机制。研究结果表明,该钢在应变速率为0.2~10 s-1、变形温度为900~1 080 ℃的条件下变形时产生了大量的局部变形带和“项链状”组织,是导致塑性失稳发生的主要原因,显微组织观察结果与Murty准则预测的塑性失稳区更为接近。基于Murty准则建立了Custom 450钢的热加工图,并确定了其最佳的热加工工艺区间分别为1 050~1 200 ℃、0.1~1 s-1和1 100~1 200 ℃、1~10 s-1

Abstract

In order to explore the best thermal deformation range of Custom 450 high-strength stainless steel to guide industrial production,the hot deformation test of Custom 450 steel was performed by a Gleeble-3800 thermal-mechanical simulator under the conditions of a temperature range of 900-1 200 ℃ and a strain rate range of 0.01-10 s-1.The applicability of Prasad and Murty instability criteria in Custom 450 steel was studied,and the best thermal deformation parameter interval and plastic instability mechanism were determined. A large number of local deformation bands and "necklace" structures formed when deformed at a strain rate range from 0.2 s-1 to 10 s-1 and a deformation temperature range from 900 ℃ to 1 080 ℃,which was the main reason in leading to the plastic instability. The Murty instability criteria was used in constructing the processing map of Custom 450 steel because the plastic instability zone predicted by the Murty criterion are more consistent with microstructure observation. Then,the optimal hot deformation conditions were also determined as 1 050-1 200 ℃,0.1-1 s-1,1 100-1 200 ℃,and 1-10 s-1.

关键词

高强度不锈钢 / 热变形 / 应力应变曲线 / 热加工图 / 塑性失稳

Key words

high-strength stainless steel / hot deformation / stress-strain curve / processing map / plastic instability

图表

引用本文

导出引用
吕建平, 王晓辉, 刘振宝, 金青林. Custom 450钢热加工图及显微组织分析[J]. 钢铁, 2021, 56(6): 112-119 https://doi.org/10.13228/j.boyuan.issn0449-749x.20200612
LÜ Jian-ping, WANG Xiao-hui, LIU Zhen-bao, JIN Qing-lin. Hot processing map and corresponding microstructural analysis of Custom 450 stainless steel[J]. Iron and Steel, 2021, 56(6): 112-119 https://doi.org/10.13228/j.boyuan.issn0449-749x.20200612

参考文献

[1] 刘振宝,梁剑雄,苏杰,等. 高强度不锈钢的研究及发展现状[J]. 金属学报,2020,56(4):549.(LIU Zhen-bao,LIANG Jian-xiong,SU Jie,et al. Research and application progress in ultra-high strength stainless steel[J]. Acta Metallurgica Sinica,2020,56(4):549.)
[2] 张菽浪. Custom 450马氏体时效-硬化不锈钢[J]. 特钢技术,2012,18(2):66.(ZHANG Shu-lang. Custom 450 martensite aging-hardening stainless steel[J]. Special Steel Technology,2012,18(2):66.)
[3] 朱晶,姜元军,何大川. 制造船用螺旋桨不锈钢材料的研究进展[J]. 中国冶金,2019,29(7):1. (ZHU Jing,JIANG Yuan-jun,HE Da-chuan. Research development of stainless steel material for manufacturing marine propeller[J]. China Metallurgy,2019,29(7):1.)
[4] 朱来斌,梁剑雄,于耀华,等. Custom 450不锈钢平衡析出相的热力学计算[J]. 连铸,2017,42(1): 20.(ZHU Lai-bin,LIANG Jian-xiong,YU Yao-hua,et al. Thermodynamic calculation of equilibrium phases in Custom 450 stainless steel[J]. Continuous Casting,2017,42(1):20.)
[5] 陈炜. 热处理对沉淀硬化不锈钢S45000力学性能的影响[J]. 热处理技术与装备,2014,35(2):30.(CHEN Wei.Influence of heat treatment on mechanial properties of precipitation hardening stainless steel S45000[J]. Heat Treatment Technology and Equipment,2014,35(2):30.)
[6] Bridge J E,Maniar G N. Metallography as a Quality Control Tool[M]. Effect of Reverted Austenite on the Mechanical Properties and Toughness of a High Strength Maraging Stainless Steel Custom 450. Boston, MA:Springer US,1980.
[7] 刘旭明,冯光宏,刘鑫,等. 2205不锈钢-碳钢复合带肋钢筋的热轧[J]. 钢铁,2020,55(11):74. (LIU Xu-ming,FENG Guang-hong,LIU Xin,et al. Hot rolling of 2205 stainless steel-carbon steel composite rebar[J]. Iron and Steel,2020,55(11):74.)
[8] 丰涵,宋志刚,浦恩祥,等. 690合金热压缩本构方程和热加工图的建立[J]. 材料热处理学报,2017,38(5):179.(FENG Han,SONG Zhi-gang,PU En-xiang,et al. Hot compression constitutive equation and processing map of 690 alloy[J]. Transactions of Materials and Heat Treatment,2017,38(5):179.)
[9] 任书杰. A100超高强度钢的等温压缩行为及工艺参数优化[D]. 南昌:南昌航空大学,2018.(REN Shu-jie. Research on Isothermal Compression Behavior and Optimization of Process Parameters for A100 Ultra-high Strength Steel[D]. Nanchang:Nanchang Hangkong University,2018.)
[10] 周盛武. TB17钛合金热变形行为及显微组织演变模拟研究[D]. 南昌:南昌航空大学,2018.(ZHOU Sheng-wu. Study on Hot Deformation Behavior and Microstructure Evolution Simulation of TB17 Titanium Alloy[D]. Nanchang:Nanchang Hangkong University,2018.)
[11] 许川,杨卯生,马爱琼. 0.30C-Cr-W渗氮轴承钢的热变形特性[J]. 金属热处理,2014,39(6):58.(XU Chuan,YANG Mao-sheng,Ma Ai-qiong. Thermal deformation characteristics of 0.30C-Cr-W nitriding bearing steel[J]. Heat Treatment of Metals,2014,39(6):58.)
[12] JIANG H,DONG J,ZHANG M. Phenomenological model for the effect of strain rate on recrystallization and grain growth kinetics in the 617B alloy[J]. Journal of Alloys and Compounds,2018,735:1520.
[13] WANG X,LIU Z,LUO H. Hot deformation characterization of ultrahigh strength stainless steel through processing maps generated using different instability criteria[J]. Materials Characterization,2017,131:480.
[14] Gronostajski Z. The deformation processing map for control of microstructure in CuAl9.2Fe3 aluminium bronze[J]. Journal of Materials Processing Technology,2002,125:119.
[15] PENG W L,HUI Z L,HUANG L,et al. Characterization of hot deformation behavior of AA2014 forging aluminum alloy using processing map[J]. Transactions of Nonferrous Metals Society of China,2017,27(8):1677.
[16] Murty S V S N,Rao B N. On the development of instability criteria during hot working with reference to IN 718[J]. Materials Science and Engineering A,1998,254(1/2):76.
[17] 戴俭,徐桂芳,程晓农,等. 高氮钢的热加工图及动态再结晶模型[J]. 热加工工艺,2020,49(5):64.(DAI Jian,XU Gui-fang,CHENG Xiao-nong,et al. Hot processing map and dynamic recrystallization model of high nitrogen steel[J]. Hot Working Technology,2020,49(5):64.)
[18] 薛小伟. 300M钢大型锻坯热成形工艺研究[D]. 长沙:湖南大学,2019.(XUE Xiao-wei. Simulation of Hot Forming Process for 300M Steel Super Large Forging Billet[D]. Changsha:Hunan University,2019.)
[19] SHI Z,YAN X,DUAN C. Characterization of hot deformation behavior of GH925 superalloy using constitutive equation,processing map and microstructure observation[J]. Journal of Alloys and Compounds,2015,652:30.
[20] 黄顺喆,厉勇,王春旭,等. Prasad与Murthy流变失稳准则下9310钢热加工图的建立与分析[J]. 钢铁,2014,49(7):107.(HUANG Shun-zhe,LI Yong,WANG Chun-xu,et al. Establishment and analysis of processing map for 9310 steel under flow instability criteria of Prasad and Murthy[J]. Iron and Steel,2014,49(7):107.)
[21] 陈明昕,杨晓江,冯晓勇. Nb元素添加对75Cr1钢热变形行为的影响[J]. 中国冶金,2020,30(6):74.(CHEN Ming-xin,YANG Xiao-jiang,FENG Xiao-yong. Effect of niobium addition on hot deformation behavior of 75Cr1 steel[J]. China Metallurgy,2020,30(6):74.)
[22] 张威,闫东娜,邹德宁,等. 超低碳13Cr-5Ni-2Mo马氏体不锈钢热变形行为及本构关系[J]. 钢铁,2012,47(5):69.(ZHANG Wei,YAN Dong-na,ZOU De-ning,et al. Hot deformation behavior and constitutive relationship for super-low carbon 13Cr-5Ni-2Mo martensitic stainless steel[J]. Iron and Steel,2012,47(5):69.)
[23] Prasad Y V R K,Gegel H L,Doraivelu S M,et al. Modeling of dynamic material behavior in hot deformation:Forging of Ti-6242[J]. Metallurgical Transactions A,1984,15(10):1883.
[24] Hassani F B E,Chenaoui A,Dkiouak R,et al. Characterization of deformation stability of medium carbon microalloyed steel during hot forging using phenomenological and continuum criteria[J]. Journal of Materials Processing Technology,2008,199(1/2/3):140.
[25] Gottstein D P,Necklace formation during dynamic recrystallization:Mechanisms and impact on flow behavior[J]. Acta Materialia,1998,46(1):69.
[26] MA X,ZENG W,XU B,et al. Characterization of the hot deformation behavior of a Ti-22Al-25 Nb alloy using processing maps based on the Murty criterion[J]. Intermetallics,2012,20(1):1.

基金

国家高新技术工程资助项目(冶20T60370B)

PDF(3702 KB)

22

Accesses

0

Citation

Detail

段落导航
相关文章

/