轧钢成品库无人天车与货车调度协同优化

彭功状, 程银亮, 梁越永, 何安瑞

钢铁 ›› 2021, Vol. 56 ›› Issue (9) : 36-42.

PDF(2304 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月26日 星期六
PDF(2304 KB)
钢铁 ›› 2021, Vol. 56 ›› Issue (9) : 36-42. DOI: 10.13228/j.boyuan.issn0449-749x.20210097
冶金人工智能技术

轧钢成品库无人天车与货车调度协同优化

  • 彭功状1, 程银亮1, 梁越永2, 何安瑞1
作者信息 +

Collaborative scheduling of vehicles and unmanned cranes in a cold-rolled steel product warehouse

  • 彭功状1, 程银亮1, 梁越永2, 何安瑞1
Author information +
文章历史 +

摘要

为了研究轧钢库区货车入库高效调度和无人天车作业合理分配协同优化问题,针对轧钢成品库区产品多品种小批量、出入库频繁等特点,建立了以订单服务时间最小为目标的整数规划模型,然后通过仿真试验对天车分配规则进行学习,并在不同订单规模下对经验规则、遗传算法和自适应遗传算法3种调度方法进行了对比试验。试验结果和现场验证均表明在各个订单规模下自适应遗传算法调度方案能高效准确地找出最优调度方案,从而为钢厂无人仓库天车调度进行指导,有效地优化了仓库物流库存管理。

Abstract

To study the collaborative scheduling of delivery vehicles and unmanned cranes in steel plant logistics warehouses,an integer programming model aiming at minimizing the service time of the cranes was established in view of the characteristics of multiple varieties and small batches of products and frequent entry and exit in cold-rolled steel product warehouse,and then the rules of cranes allocation were set up. Experiments were carried out under different order sizes by using heuristics-based scheduling,traditional genetic algorithm based scheduling and adaptive genetic algorithm (AGA) based scheduling. Experiment results shown that,compared with the other two scheduling schemes,the adaptive genetic algorithm based scheduling scheme can find out optimal scheduling results quickly and efficiently under different order sizes,which can guide the crane scheduling of unmanned warehouses in steel plants and effectively optimize the warehouse logistics inventory management.

关键词

无人仓库 / 天车分配 / 车辆调度 / 协同优化 / 自适应遗传算法

Key words

unmanned warehouse / crane allocation / vehicle scheduling / collaborative optimization / adaptive genetic algorithm

图表

引用本文

导出引用
彭功状, 程银亮, 梁越永, . 轧钢成品库无人天车与货车调度协同优化[J]. 钢铁, 2021, 56(9): 36-42 https://doi.org/10.13228/j.boyuan.issn0449-749x.20210097
PENG Gong-zhuang, CHENG Yin-liang, LIANG Yue-yong, et al. Collaborative scheduling of vehicles and unmanned cranes in a cold-rolled steel product warehouse[J]. Iron and Steel, 2021, 56(9): 36-42 https://doi.org/10.13228/j.boyuan.issn0449-749x.20210097

参考文献

[1] ZHANG Y,GUO Z,LÜ J,et al. A framework for smart production-logistics systems based on CPS and industrial IoT[J]. IEEE Transactions on Industrial Informatics,2018,14(9):4019.
[2] 王龙,冀秀梅,刘玠. 人工智能在钢铁工业智能制造中的应用[J]. 钢铁,2021,56(4):1. (WANG Long,JI Xiu-mei,LIU Jie. Application of artificial intelligence in intelligent manufacturing in steel industry[J]. Iron and Steel,2021,56(4):1.)
[3] 李晓刚,向永光. 唐钢高强汽车板原料库天车无人化系统设计及应用[J]. 冶金自动化,2017,41(3):6. (LI Xiao-gang,XIANG Yong-guang. Design and application for unmanned crane system in material yard of HBIS Tangsteel High Strength Automobile Plate Co.,Ltd.[J]. Metallurgical Industry Automation,2017,41(3):6.)
[4] 许茂增,余国印,周翔,等. 综合成本最小的低碳车辆调度问题及算法[J]. 计算机集成制造系统,2015,21(7):1906. (XU Mao-zeng,YU Guo-yin,ZHOU Xiang,et al. Low-carbon vehicle scheduling problem and algorithm with minimum-comprehensive-cost[J]. Computer Integrated Manufacturing Systems,2015,21(7):1906.)
[5] Sun D F,Tang L X,Baldacci R. A Benders decomposition-based framework for solving quay crane scheduling problems[J]. European Journal of Operational Research,2019,273(2):504.
[6] 向永光. 基于天车无人化库区天车作业调度模型理论与实践[J]. 电子界,2017(6):40.(XIANG Yong-guang. Theory and practice of crane operation scheduling model based on crane unmanned reservoir area[J]. Electronic World,2017(6):40.)
[7] 杨文强,邓丽,牛群,等. 针对库区分配优化问题的改进型细菌觅食算法[J]. 计算机集成制造系统,2014,20(7):1684. (YANG Wen-qiang,DENG Li,NIU Qun,et al. Improved bacterial foraging algorithm based on automated warehouse area allocation optimization[J]. Computer Integrated Manufacturing Systems,2014,20(7):1684.)
[8] Virgile Galle,Cynthia Barnhart,Patrick Jaillet. Yard crane scheduling for container storage,retrieval,and relocation[J]. European Journal of Operational Research,2018,271(1):288.
[9] 赵宁,杜彦华,董绍华,等. 基于循环仿真的钢铁板坯库天车作业优化[J]. 系统工程理论与实践,2012,32(12):2825.(ZHAO Ning,DU Yan-hua,DONG Shao-hua,et al. Optimization of crane operation in slab yard based on cyclic simulation[J]. System Engineering Theory and Practice,2012,32(12):2825.)
[10] 郑忠,周超,陈开. 基于免疫遗传算法的车间天车调度仿真模型[J]. 系统工程理论与实践,2013,33(1):223.(ZHENG Zhong,ZHOU Chao,CHEN Kai. Simulation model of crane scheduling based on immune genetic algorithm[J]. System Engineering Theory and Practice,2013,33(1):223.)
[11] Bierwirth C,Meisel F. A follow-up survey of berth allocation and quay crane scheduling problems in container terminals[J]. European Journal of Operational Research,2015,244(3):675.
[12] HU Qing-mi,HU Zhi-hua,DU Yu-quan. Berth and quay-crane allocation problem considering fuel consumption and emissions from vessels[J]. Computers and Industrial Engineering,2014,70:1.
[13] TING Ching-jung,WU Kun-chih,CHOU Hao. Particle swarm optimization algorithm for the berth allocation problem[J]. Expert Systems with Applications,2014,41(4):1543.
[14] León A D,Lalla-Ruiz E,Melián-Batista B,et al. A machine learning-based system for berth scheduling at bulk terminals[J]. Expert Systems with Applications,2017,87:170.
[15] Pan J C H,Shih P H,Wu M H,et al. A storage assignment heuristic method based on genetic algorithm for a pick-and-pass warehousing system[J]. Computers and Industrial Engineering,2015,81:1.
[16] Abdelhafez A,Alba E,Luque G. Performance analysis of synchronous and asynchronous distributed genetic algorithms on multiprocessors[J]. Swarm and Evolutionary Computation,2019,49:147.

基金

国家自然科学基金资助项目(61903031); 中央高校基本科研业务费资助项目(FRF-TP-20-050A2)

PDF(2304 KB)

27

Accesses

0

Citation

Detail

段落导航
相关文章

/