含锌粉尘协同处置含铬尘泥的碳热还原试验

陈卓, 郑睿琦, 堵伟桐, 居殿春, 高建军, 齐渊洪

钢铁 ›› 2021, Vol. 56 ›› Issue (11) : 148-159.

PDF(7426 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月27日 星期日
PDF(7426 KB)
钢铁 ›› 2021, Vol. 56 ›› Issue (11) : 148-159. DOI: 10.13228/j.boyuan.issn0449-749x.20210232
环保与能源

含锌粉尘协同处置含铬尘泥的碳热还原试验

  • 陈卓1, 郑睿琦1, 堵伟桐1, 居殿春1, 高建军2, 齐渊洪2
作者信息 +

Experiment on co-processing of chromium-containing sludge with zinc-bearing dust by carbothermic reduction method

  • 陈卓1, 郑睿琦1, 堵伟桐1, 居殿春1, 高建军2, 齐渊洪2
Author information +
文章历史 +

摘要

为实现钢铁行业的绿色循环发展,钢铁厂对含锌粉尘和含铬废水的处置利用均应满足环保和资源高效利用等要求。以某钢铁企业的含锌粉尘和含铬尘泥2种固废为例进行碳热还原协同处置研究,采用FactSage热力学软件平衡计算,分析碳热还原过程中的潜在反应和气-液-固相变化;通过模拟转底炉工艺,在实验室进行碳热还原试验,研究不同原料配比和还原温度对碳热还原效果的影响规律,采用XRD和SEM-EDS对反应后金属化球团的物相组成及形貌进行研究;综合热力学分析与试验研究阐明含锌粉尘协同处置含铬尘泥的碳热还原机理。研究结果表明,铁酸锌和铬铁矿可以有效分解为铁氧化物和铬氧化物,随着温度升高,铁氧化物的还原过程遵循逐级还原规律,最终被还原为金属铁;相较于铁氧化物,铬氧化物在更高温度下还原为金属铬。试验结果与热力学计算趋势一致,控制碳热还原时间为60 min,含铬尘泥和含锌粉尘干基质量比为1∶4,还原温度为1 300 ℃,能够达到较佳的还原效果。采用多种固废协同处置方式,不仅可以解决粉尘大量堆积的问题,而且能够提取含锌粉尘和含铬尘泥中有价金属元素,制备成金属化球团;该方法也可为含铬废水无害化处置提供新途径,实现资源化综合利用,提高企业经济效益。

Abstract

In order to realize the green and circular development of steel industry,the disposal and utilization of zinc-bearing dust and chromium-containing sludge in steel plants should meet the requirements of environmental protection and efficient use of resources. Firstly,taking the zinc-bearing dust and chromium-containing sludge of a steel plant as an example to study the co-processing of carbothermic reduction,the potential reactions occurred in the process and variations of gas-liquid-solid were calculated using the Equilib module of FactSage software. Secondly,the effects of reaction temperature and ratio of zinc-bearing dust and chromium-containing sludge on carbothermic reduction were studied by laboratory experiment for simulating the rotary hearth furnace,and XRD and SEM-EDS methods were used to study the phase composition and morphology of metalized pellets after the reaction. Finally,combined with thermodynamic analysis and experimental results,the reaction mechanism of carbothermic reduction was clarified. The results show that ZnFe2O4and FeCr2O4 can effectively decompose into iron oxide and chromium oxide. As the temperature rising,the iron oxide is reduced to metallic iron and the reduction process follows the law of stepwise reduction. The chromium oxide can be reduced to metallic chromium at a higher temperature compared to iron oxide,and the experimental results are consistent with the thermodynamic calculation trend. When the carbon-containing pellets mixed at a ratio of 1∶4 are roasted at 1 300 ℃ for 60 minutes,the optimum reduction of carbon-containing pellets can be reached. The use of multiple solid waste co-processing methods can not only solve the problem of large amounts of dust accumulation,but also extract valuable metal elements from zinc-bearing dust and chromium-containing sludge to prepare metalized pellets. The method can also provide new ways for the harmless disposal of chromium-containing wastewater,realize comprehensive utilization of resources, and improve the economic benefits of enterprises.

关键词

含锌粉尘 / 含铬尘泥 / 协同处置 / 碳热还原 / 热力学

Key words

zinc-bearing dust / chromium-containing sludge / co-processing / carbothermic reduction / thermodynamics

图表

引用本文

导出引用
陈卓, 郑睿琦, 堵伟桐, . 含锌粉尘协同处置含铬尘泥的碳热还原试验[J]. 钢铁, 2021, 56(11): 148-159 https://doi.org/10.13228/j.boyuan.issn0449-749x.20210232
CHEN Zhuo, ZHENG Rui-qi, DU Wei-tong, et al. Experiment on co-processing of chromium-containing sludge with zinc-bearing dust by carbothermic reduction method[J]. Iron and Steel, 2021, 56(11): 148-159 https://doi.org/10.13228/j.boyuan.issn0449-749x.20210232

参考文献

[1] 尚海霞,李海铭,魏汝飞,等. 钢铁尘泥的利用技术现状及展望[J]. 钢铁,2019,54(3):9.(SHANG Hai-xia,LI Hai-ming,WEI Ru-fei,et al. Present situation and prospect of iron and steel dust and sludge utilization technology[J]. Iron and Steel,2019,54(3):9.)
[2] 马贵生,夏秋雨,张树华,等.钢厂高炉Zn负荷控制与含铁尘泥利用研究[J]. 烧结球团,2020,45(5):77.(MA Gui-sheng,XIA Qiu-yu,ZHANG Shu-hua,et al. Research on Zn load control and utlization of ferrous dust in blast furnace of steel plant[J]. Sintering and Pelletizing,2020,45(5):77.)
[3] 郝素菊,张文博,蒋武锋. 利用熔融钢渣处理含锌粉尘的初步实验研究[J]. 上海金属,2016,38(4):50.(HAO Su-ju,ZHANG Wen-bo,JIANG Wu-feng. Preliminary exterimental study on treating zinc-bearing dust with molten slag[J]. Shanghai Metals,2016,38(4):50.)
[4] Kukurugya F,Vindt T,Havlik T. Behavior of zinc,iron and calcium from electric arc furnace(EAF) dust in hydrometallurgical processing in sulfuric acid solutions:Thermodynamic and kinetic aspects[J]. Hydrometallurgy,2015,154:20.
[5] YU G,PENG N,ZHOU L,et al. Selective reduction process of zinc ferrite and its application in treatment of zinc leaching residues[J]. Transactions of Nonferrous Metals Society of China,2015,25(8):2744.
[6] 毛瑞,张建良,刘征建,等. 钢铁流程含铁尘泥特性及其资源化[J]. 中南大学学报(自然科学版),2015,46(3):774.(MAO Rui,ZHANG Jian-liang,LIU Zheng-jian,et al. Characteristic and resource utilization technique of dust and sludge containing iron from steel production process[J]. Journal of Central South University(Science and Technology),2015,46(3):774.)
[7] 张笑菲,王博,居天华,等. 还原剂对含碳球团预还原过程尾气成分的影响[J]. 烧结球团,2020,45(6):5.(ZHANG Xiao-fei,WANG Bo,JU Tian-hua,et al. Influence of reducing agent to tail gas composition during the pre-reduction process of carbon-containing pellets[J]. Sintering and Pelletizing,2020,45(6):5)
[8] 毛瑞,任立群,杜屏,等. 基于转底炉工艺的冶金含铁尘泥造球试验研究[J]. 矿冶工程,2017,37(2):107.(MAO Rui,REN Li-qun,DU Ping,et al. Experimental study on pelletizing with iron-containing dust and sludge with rotary hearth furnace process[J]. Mining and Metallurgical Engineering,2017,37(2):107.)
[9] 毛瑞,任立群,杜屏,等. 含铁尘泥金属化球团的合理渣系[J]. 钢铁研究学报,2017,29(5):357.(MAO Rui,REN Li-qun,DU Ping,et al. Reasonable slag system for metallized pellet made of dust and sludge containing iron[J]. Journal of Iron and Steel Research,2017,29(5):357.)
[10] XIA L G,MAO R,ZHANG J L,et al. Reduction process and zinc removal from composite briquettes composed of dust and sludge from a steel enterprise[J]. International Journal of Minerals,Metallurgy and Materials,2015,22(2):122.
[11] 刘琳,赵强,冯晓峰. 含锌除尘灰锌铁分离研究[J]. 钢铁研究学报,2020,32(8):714.(LIU Lin,ZHAO Qiang,FENG Xiao-feng. Study on separation of zinc iron from dust ash and containing zinc[J]. Journal of Iron and Steel Research,2020,32(8):714.)
[12] 漆启松,徐安军,贺东风,等. 碳热还原法回收不锈钢尾渣中铁和铬的试验[J]. 钢铁,2017,52(3):82.(QI Qi-song,XU An-jun,HE Dong-feng,et al. Carbothermic reduction for recycling of iron and chromium from stainless steel slag[J]. Iron and Steel,2017,52(3):82.)
[13] 郭育良,金会心,王伟杰. 不锈钢生产中含铬固体废弃物的回收利用[J]. 中国冶金,2021,31(1):81.(GUO Yu-liang,JIN Hui-xin,WANG Wei-jie. Recycling of solid waste containing chromium in stainless steel production[J]. China Metallurgy,2021,31(1):81.)
[14] TANG L,YANG G D,ZENG G M,et al. Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study[J]. Chemical Engineering Journal,2014,239:114.
[15] Yeo J,Kim D H,Bokare A D,et al. Photochemical removal of hexavalent chromium through iodide oxidation under 254 nm irradiation[J]. Separation and Purification Technology,2012,91:18.
[16] Marquez-Reyes J M,Lopez-Chuken U J,Valdez-Gonzalez A,et al. Removal of chromium and lead by a sulfate-reducing consortium using peat moss as carbon source[J]. Bioresource Technology,2013,144:128.
[17] Jung C,Heo J,Han J,et al. Hexavalent chromium removal by various adsorbents:Powdered activated carbon,chitosan,and single/multi-walled carbon nanotubes[J]. Separation and Purification Technology,2013,106:63.
[18] Miretzky P,Cirelli A F. Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials:A review[J]. Journal of Hazardous Materials,2010,180(1):1.
[19] Cetin K,Cihan A,Selda K,et al. Cr(VI) removal from aqueous systems using pyrite as the reducing agent:Batch,spectroscopic and column experiments[J]. Journal of Contaminant Hydrology,2015,174:28.
[20] 周栋,高娜,高乐. 工业含铬废水处理技术研究进展[J]. 中国冶金,2017,27(1):2.(ZHOU Dong,GAO Na,GAO Le. Research progress on chromium-containing industrial wastewater treatment technology[J]. China Metallurgy,2017,27(1):2.)
[21] 王谦,李延,孙平,等. 含铬废水处理技术及研究进展[J]. 环境科学与技术,2013,36(12):150.(WANG Qian,LI Yan,SUN Ping,et al. The treatment techology and research progress of hexavalent chromium-containing sludge[J]. Enviromental Science and Technology,2013,36(12): 150.)
[22] Zouboulis A I,Loukidou M X,Matis K A. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils[J]. Process Biochemistry,2004,39(8):909.
[23] 苏敦磊,李克先,李秋义,等. 多种工业固废协同制备高贝利特硫铝酸盐水泥的探索性研究[J]. 新型建筑材料,2019,12(9):9.(SU Dun-lei,LI Ke-xian,LI Qiu-yi,et al. Exploratory research on synergistic preparation of high belite sulphoaluminate cement with various industrial solid wastes[J]. New Building Materials,2019,12(9):9.)
[24] 邱国兴,石清侠. 红土矿含碳球团还原富集镍铁的工艺研究[J]. 矿冶工程,2009,29(6):75.(QIU Guo-xing,SHI Qing-xia. Research on reduction and enrichment of ferronickel from laterite nickel ores using carbon as reductant[J]. Mining and Metallurgical Engineering,2009,29(6):75.)
[25] 徐萌,赵志星,张建良,等. 含碳球团的还原熔分行为[J]. 钢铁研究学报,2007,19(10):11.(XU Meng,ZHAO Zhi-xing,ZHANG Jian-liang,et al. Behaviour of reduction,meltingand separation in ore/coal composite pellets[J]. Journal of Iron and Steel Research,2007,19(10):11.)
[26] 田铁磊,张玉柱,李杰,等. SiO2在炉渣CaO-SiO2-MgO-Al2O3体系中的熔解行为[J]. 矿冶工程,2018,38(3):99.(TIAN Tie-lei,ZHANG Yu-zhu,LI Jie,et al. Melting behavior of SiO2in CaO-SiO2-MgO-Al2O3system[J]. Mining and Metallurgical Engineering,2018,38(3):99.)
[27] 宋海琛. 不锈钢粉尘直接还原机理的研究[D]. 长沙:中南大学,2005.(SONG Hai-chen. Study on the Direct Reduction Mechanism of Stainless Steel Dust[D]. Changsha:Central South University,2005.)

基金

国家重点研发计划资助项目(2019YFC1905702);江苏省高校自然科学基金面上项目(20KJD450001)

PDF(7426 KB)

Accesses

Citation

Detail

段落导航
相关文章

/