为了控制与改善高碳硬线钢中氧化铝夹杂物的数量、形状和分布,提高钢的洁净度,细化钢的组织结构,均匀钢的化学成分,在高碳硬线钢中添加稀土镧元素研究其对氧化铝夹杂物的改性问题。通过对高碳硬线钢中添加稀土镧形成的稀土氧(硫)化物,采用扫描电镜和能谱分析进行表征,研究其对氧化铝的改性问题,发现镧的加入可以改变夹杂物的形状,夹杂物从不规则形状转变为较规则的椭圆形,随着夹杂物面间距增大,其逐渐弥散化。利用热力学以及边-边匹配模型计算其与γ-Fe和Al2O3之间沿密排晶向的原子间错配度和密排晶面的面间错配度,探究含镧夹杂物作为钢液凝固时初生相异质形核核心的可能性及有效性。结果表明,加入镧后,在1 000~2 000 K温度范围内根据生成夹杂物的吉布斯自由能的大小,得出钢中可能生成夹杂物的顺序为La2O3>La2O2S>LaAlO3>LaS>La3S4。利用边-边匹配模型计算稀土氧(硫)化物与γ-Fe和Al2O3之间的原子匹配情况,发现了La2O3、LaS、La2O2S和La3S4均可能作为Al2O3和γ-Fe异质形核的核心,且La2O2S可能优先成为γ-Fe异质形核核心, LaS可能优先成为Al2O3异质形核核心,揭示了钢中氧化铝夹杂物的改性机理,为高碳硬线钢中非金属夹杂物的处理提供了理论依据。
Abstract
In order to control and improve the number, shape and distribution of alumina inclusions in high carbon hard wire steel, improve the purity of steel, refine the structure of steel, and even the chemical composition of steel, rare earth lanthanum is added to high carbon hard wire steel. The element studies its modification of alumina inclusions. The rare earth oxygen (sulfide) compound formed by adding rare earth lanthanum to high carbon hard wire steel was characterized by scanning electron microscopy and energy spectrum analysis, and the modification of it on alumina was studied. It is found that the addition of lanthanum can change the shape of inclusions. The inclusion changes from an irregular shape to a more regular ellipse, and as the distance between inclusion surface increases, it gradually disperses. Thermodynamics and edge-edge matching model were used to calculate the interatomic mismatch along the dense row crystal direction between γ-Fe and Al2O3and the interplanar mismatch of the dense row crystal plane. The possibility and effectiveness of lanthanum inclusions as the nucleation core of primary phase during solidification of molten steel were explored. The results show that after adding lanthanum, according to the Gibbs free energy of inclusions in the temperature range of 1 000-2 000 K, the order of possible inclusions produced in steel is, La2O3>La2O2S>LaAlO3>LaS>La3S4. The edge-edge matching model was used to calculate the atomic matching between rare earth oxygen (sulfide) compounds and γ-Fe and Al2O3. It is found that La2O3, LaS, La2O2S and La3S4 may all be the cores of Al2O3 and γ-Fe heterogeneous nucleation. Moreover, La2O2S may preferentially become the nucleation core of γ-Fe heterogeneous, while LaS may preferentially become the core of Al2O3 heterogeneous nucleation,the modification mechanism of alumina inclusions in steel is revealed, which provides a theoretical basis for the treatment of non-metallic inclusions in high-carbon hard wire steel.
关键词
高碳硬线钢 /
稀土夹杂物 /
异质形核 /
边-边匹配模型 /
晶体学
{{custom_keyword}} /
Key words
high carbon hard wire steel /
rare earth inclusion /
heterogeneous nucleation /
edge-edge matching model /
crystallography
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LIU Qing-suo, LI Jin-man, ZHANG Xin,et al. Effect of heat treatment on the microstructure and mechanical properties of ultra-high-carbon steel[J]. Metal Science and Heat Treatment, 2021, 62(11):775.
[2] Gondo S,Tanemura R,Mitsui R, et al. Relationship between mesoscale structure and ductility of drawn high carbon steel wire[J]. Materials Science and Engineering: A,2021, 800(5):140283.
[3] CHEN Kui,LI Hua-bing, JIANG Zhou-hua,et al. Multiphase microstructure formation and its effect on fracture behavior of medium carbon high silicon high strength steel[J]. Journal of Materials Science and Technology, 2021, 72(13): 12.
[4] André Luiz Vasconcellos da Costa e Silva. Non-metallic inclusions in steels-origin and control[J]. Journal of Materials Research and Technology, 2018, 7(3): 283.
[5] 张立峰,李燕龙,任英.钢中非金属夹杂物的相关基础研究(Ι)——非稳态浇铸中的大颗粒夹杂物及夹杂物的形核、长大、运动、去除和捕捉[J].钢铁,2013,48(11):1.(ZHANG Li-feng,LI Yan-long,REN Ying. Fundamentals of non-metallic inclusions in steel(Part Ⅰ).Control of unsteady casting and big inclusions;nucleation,motion,removal and capture of inclusions in molten steel[J].Iron and Steel,2013,48(11):1.)
[6] 张立峰,李燕龙,任英.钢中非金属夹杂物的相关基础研究(Ⅱ)——夹杂物检测方法及脱氧热力学基础[J].钢铁,2013,48(12):1. (ZHANG Li-feng,LI Yan-long,REN Ying. Fundamentals of non-metallic inclusions in steel(Part Ⅱ).Evaluation method of inclusions and thermodynamics of steel deoxidation[J].Iron and Steel, 2013,48(12):1.)
[7] ZHANG Xue-liang, YANG Shu-feng, LI Jing-she,et al.Temperature-dependent evolution of oxide inclusions during heat treatment of stainless steel with yttrium addition[J].International Journal of Minerals Metallurgy and Materials,2020,27(6):754.
[8] 李西德,邓深,杨跃标,等. SWRH82B硬线钢CaO-Al2O3-SiO2系夹杂物塑性化控制的生产实践[J]. 中国冶金, 2018, 28(2): 61. (LI Xi-de,DENG Shen,YANG Yue-biao,et al. Productive practice of plastic deformation control of CaO-Al2O3-SiO2 inclusions in SWRH82B hard wire steel[J]. China Metallurgy, 2018, 28(2): 61.)
[9] 李中元,李长荣.稀土Ce元素对钢中夹杂物变质的影响[J].材料热处理学报,2018,39(10):75.(LI Zhong-yuan,LI Chang-rong. Effect of rare earth Ce element on modification of inclusions in steel[J].Transactions of Materials and Heat Treatment,2018,39(10):75.)
[10] 李文超.钢中稀土夹杂物生成的热力学规律[J].钢铁,1986,21(3):7.(LI Wen-chao.Thermodynamics of rare earth inclusions in steel[J].Iron and Steel, 1986,21(3):7.)
[11] WANG Feng,QIU Dong, LIU Zhi-lin,et al. Crystallographic study of grain refinement of Al by Nb addition[J]. Journal of Applied Crystallography, 2014, 47(2): 770.
[12] ZHANG M X, Kelly P M. Edge-to-edge matching and its applications(Part Ⅰ). Application to the simple HCP/BCC system[J]. Acta Materialia, 2005, 53(4):1073.
[13] ZHANG M X, Kelly P M. Edge-to-edge matching and its applications(Part Ⅱ). Application to Mg-Al, Mg-Y and Mg-Mn alloys[J]. Acta Materialia, 2005, 53(4):1085.
[14] 计云萍. 镧铈细化钢液凝固初生相δ铁素体的作用及机理[D].上海:上海大学,2019.(JI Yun-ping. Effects and Mechanism of Lanthanum/Cerium on Refinement of the Primary δ-Ferrite in Solidification of Steels[D].Shanghai:Shanghai University,2019.)
[15] 柴国强,王福明,付军,等.高碳硬线钢82B中Al2O3-SiO2-MgO-CaO-MnO系夹杂物塑性化控制[J].北京科技大学学报,2010,32(6):730.(CHAI Guo-qiang,WANG Fu-ming,FU Jun,et al. Deform ability control of Al2O3-SiO2-MgO-CaO-MnO system inclusions in high carbon hard wire 82B steel[J].Journal of University of Science and Technology Beijing,2010,32(6):730.)
[16] 王奕,李长荣,曾泽芸,等.SWRS82B钢中稀土元素对氧化铝改性的晶体学[J].钢铁,2020,55(10):69.(WANG Yi,LI Chang-rong,ZENG Ze-yun,et al.Crystallization of alumina modified by rare earth elements in SWRS82B steel[J]. Iron and Steel,2020,55(10):69.)
[17] 杨庆祥,姚枚,魏雅娟.稀土氧化物对中高碳钢堆焊金属中夹杂物变质作用的热力学分析[J].中国稀土学报,2001,19(5):439.(YANG Qing-xiang,YAO Mei,WEI Ya-juan. Thermodynamics of modifying effect of rare earth oxide on inclusions in hardfacing metal of medium-high carbon steel[J].Journal of The Chinese Rare Rarth Society,2001,19(5):439.)
[18] 计云萍,亢磊,宋艳青,等.RE2O3对钢液凝固时异质形核促进效用的晶体学计算[J].稀有金属材料与工程,2017,46(10):2889.(JI Yun-ping,KANG Lei,SONG Yan-qing,et al. Crystallographic calculation about heterogeneous nucleation potency of RE2O3 in liquid steel[J].Rare Metal Materials and Engineering,2017,46(10):2889.)
[19] Kelly P M, Zhang M X. Edge-to-edge matching-a new approach to the morphology and crystallography of precipitates[J]. Materials Forum, 1999, 48(9):23.
[20] Hahn Theoed. International tables for crystallography: Space-group symmetry[J]. Mineralogical Magazine, 1984, 48(349): 589.
[21] Zhang M X, Kelly P M. Edge-to-edge matching model for predicting orientation relationships and habit planes-the improvements[J]. Scripta Materialia, 2005, 52(10):963.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(52074095,51864013)
{{custom_fund}}