冷作硬化非调质钢的连续冷却相变规律

江畅, 王子波, 王杨, 陆恒昌, 满廷慧, 周蕾

钢铁 ›› 2022, Vol. 57 ›› Issue (3) : 91-96.

PDF(3199 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月26日 星期六
PDF(3199 KB)
钢铁 ›› 2022, Vol. 57 ›› Issue (3) : 91-96. DOI: 10.13228/j.boyuan.issn0449-749x.20210531
钢铁材料

冷作硬化非调质钢的连续冷却相变规律

  • 江畅1, 王子波1, 王杨2, 陆恒昌1, 满廷慧1, 周蕾2
作者信息 +

Continuous cooling transformation law of cold work hardening non-quenched and tempered steel

  • 江畅1, 王子波1, 王杨2, 陆恒昌1, 满廷慧1, 周蕾2
Author information +
文章历史 +

摘要

钢的连续冷却相变曲线(CCT)是组织调控的基本依据,为了优化紧固件用冷作硬化非调钢热轧态的组织和力学性能,采用DIL805A相变仪测定了试验钢在0.1~50 ℃/s不同冷却速率下的热膨胀曲线,结合金相-硬度法确定相变类型,并绘制了试验钢的CCT曲线。结果表明,试验钢马氏体转变点(Ms)为280 ℃,在不同冷速范围内均有铁素体生成;随着冷速的增加,铁素体和珠光体转变开始温度降低,同时铁素体含量不断降低、晶粒尺寸减小;冷速小于3 ℃/s时,室温组织由先共析铁素体和珠光体组成,随冷速增加硬度变化不大,为156~166HV;当冷速达到3 ℃/s时,开始出现贝氏体和马氏体,硬度快速增加至181HV;当冷速大于3 ℃/s后,先共析铁素体和珠光体含量逐渐减少,贝氏体和马氏体含量增加,硬度不断提高;冷速为30~50 ℃/s时,组织以贝氏体和马氏体为主。Nb、V均对连续相变起到重要影响。利用Thermo-Calc软件计算试验钢Nb、V碳氮化物析出行为,计算得到V(C,N)、Nb(C,N)全固溶温度分别为780、1 144 ℃;在900 ℃奥氏体化条件下,V(C,N)全部固溶,Nb(C,N)固溶了8%,由于Nb、V的扩散速率比C慢得多,固溶的Nb、V在冷却转变过程中来不及扩散而聚集在两相界面上,降低铁素体的长大速率,抑制铁素体形成,促进贝氏体或马氏体相变。

Abstract

The continuous cooling transformation(CCT) law of steel is the basic basis of microstructure regulation. In order to optimize the microstructure and mechanical properties of cold work hardening non-quenched steel for fasteners in hot rolling state,the thermal expansion curves of the test steel at cooling rates 0.1-50 ℃/s was measured by DIL805A phase transformation instrument,combined with metallographic hardness method to determine the transformation type,and draw the static CCT curve of the test steel. The results show that the martensite transformation point (Ms) of the test steel is 280 ℃,and ferrite is formed in different cooling rate ranges. With the increase of cooling rate,the transition temperature of ferrite and pearlite decreases,and the content and grain size of ferrite decrease. Cooling rate less than 3 ℃/s,the room temperature microstructure is composed of proeutectoid ferrite and pearlite,and the hardness changes little with the increase of cooling rate,which is 156-166HV. When the cooling rate reaches 3 ℃/s,bainite and martensite begin to appear,and the hardness increases rapidly to 181HV. When the cooling rate is greater than 3 ℃/s,the content of proeutectoid ferrite and pearlite decrease gradually,the content of bainite and martensite increase,and the hardness increase continuously. When cooling rate is 30-50 ℃/s,the microstructure is mainly bainite and martensite.Nb and V play important roles in the continuous phase transition. The precipitation behavior of Nb and V carbonitride in the test steel was calculated by Thermo-Calc software. The total solid solution temperatures of V (C,N) and Nb (C,N) were 780 ℃ and 1 144 ℃ respectively. Under the condition of austenitizing at 900 ℃,V(C,N) is completely solid solution,and Nb(C,N) is solid solution by 8%. Because the diffusion rate of Nb and V is much slower than that of C,the solid solution Nb and V have no time to diffuse in the cooling transformation process and gather at the two-phase interface,reducing the growth rate of ferrite,inhibiting the formation of ferrite and promoting bainite or martensite transformation.

关键词

非调质钢 / 连续冷却转变 / 显微组织 / 冷作硬化 / Nb、V碳氮化物

Key words

non-quenched and tempered steel / continuous cooling transformation / microstructure / cold work hardening / Nb、V carbonitride

图表

引用本文

导出引用
江畅, 王子波, 王杨, . 冷作硬化非调质钢的连续冷却相变规律[J]. 钢铁, 2022, 57(3): 91-96 https://doi.org/10.13228/j.boyuan.issn0449-749x.20210531
JIANG Chang, WANG Zi-bo, WANG Yang, et al. Continuous cooling transformation law of cold work hardening non-quenched and tempered steel[J]. Iron and Steel, 2022, 57(3): 91-96 https://doi.org/10.13228/j.boyuan.issn0449-749x.20210531

参考文献

[1] 董瀚, 廉心桐, 胡春东, 等. 钢的高性能化理论与技术进展[J]. 金属学报, 2020, 56(4):558.(DONG Han, LIAN Xin-tong, HU Chun-dong, et al. High performance steels: The scenario of theory and technology[J]. Acta Metallurgica Sinica,2020,56(4):558.)
[2] 蔡璐, 王章忠, 赵秀明, 等. 冷作硬化非调质钢螺栓的形变强化效应[J]. 材料工程, 2010(4):69.(CAI Lu, WANG Zhang-zhong, ZHAO Xiu-ming, et al. Deformation strengthening effect of microalloyed steel for cold heading bolt[J]. Materials Engineering, 2010(4):69.)
[3] 刘瑞宁, 王福明. 汽车用微合金化非调质钢的进展[J]. 特殊钢, 2006(3):39.(LIU Rui-ning, WANG Fu-ming. Advance in microalloying non-quenched-tempered steels for auto[J]. Special Steel, 2006(3):39.)
[4] 谢丁, 代璐蔚, 陈元芳. 38MnVTi非调质钢的CCT曲线的测定与分析[J]. 热加工工艺, 2019, 48(14):30.(XIE Ding, DAI Lu-wei, CHEN Yuan-fang. Determination and analysis of CCT curves of non-quenched and tempered 38MnVTi steel[J]. Hot Working Process, 2019, 48(14):30.)
[5] 赵宝纯, 张涛, 李桂艳, 等.低合金高强钢形变奥氏体相变行为及其模型[J]. 钢铁, 2019, 54(7):98.(ZHAO Bao-chun, ZHANG Tao, LI Gui-yan, et al. Continuous cooling transformation behavior and modeling of hot deformed austenite in a HSLA steel[J]. Iron and Steel, 2019, 54(7):98.)
[6] 史远, 戴观文, 安治国, 等. 高强贝氏体非调质钢的奥氏体连续冷却相变[J]. 金属热处理, 2019, 44(2):25.(SHI Yuan, DAI Guan-wen, AN Zhi-guo, et al. Continuous cooling transformation of austenite for high strength bainitic non-quenched and tempered steel[J]. Metal Heat Treatment, 2019, 44(2):25.)
[7] 惠亚军, 于洋, 王畅, 等. 铌-钛微合金化高强钢连续冷却的相变规律[J]. 钢铁研究学报, 2014, 26(12):42.(HUI Ya-jun, YU Yang, WANG Chang, et al. Phase transformation rule of a Nb-Ti microalloyed high strength steel during continuous cooling[J]. Journal of Iron and Steel Research, 2014, 26(12):42.)
[8] 朱茂华, 王福明, 文学荣, 等. Nb-V微合金中碳非调质钢CCT曲线的测定与分析[J]. 金属热处理, 2017, 42(8):20.(ZHU Mao-hua, WANG Fu-ming, WEN Xue-rong, et al. Determination and analysis of CCT curve of Nb-V microalloyed medium carbon non-quenched-tempered steel[J]. Metal Heat Treatment, 2017, 42(8):20.)
[9] MAN Ting-hui, GAO Peng, HE Yi-gui, et al. Effect of forging process on V-Nb-Ti microalloyed non-quenched and tempered steels[J]. Advanced Materials Research, 2014, 936:1179.
[10] 满廷慧, 高鹏, 何沂桂, 等. Nb-V复合非调质钢锻后组织变化[J]. 金属热处理, 2014, 39(9):21.(MAN Ting-hui, GAO Peng, HE Yi-gui, et al. Microstructure changes of Nb-V composite non-quenched and tempered steel after forging[J]. Metal Heat Treatment, 2014, 39(9):21.)
[11] 刘宗昌, 计云萍. 贝氏体组织结构辨识方法(一)[J]. 热处理技术与装备, 2018, 39(5):1.(LIU Zong-chang, JI Yun-ping. Identification methods of bainitic microstructure(I)[J]. Heat Treatment Technology and Equipment, 2018, 39(5):1.)
[12] 廉晓洁, 成生会, 周杰, 等. 20Cr1Mo1V 钢 CCT 曲线的测定与分析[J]. 热加工工艺, 2014, 43(20):29.(LIAN Xiao-jie, CHENG Sheng-hui, ZHOU Jie, et al. Determination and analysis on CCT curves of 20Cr1Mo1V steel[J]. Hot Working Process, 2014, 43(20):29.)
[13] 李红英, 丁常伟, 张希旺, 等. 16MnR钢奥氏体连续冷却转变曲线(CCT 图)[J]. 材料科学与工程学报, 2007, 25(5):727.(LI Hong-ying, DING Chang-wei, ZHANG Xi-wang, et al. Continuous cooling transformation curve of under cooling austenite about 16MnR steel[J]. Journal of Materials Science and Engineering, 2007, 25(5):727.)
[14] 陈林恒, 王文涛, 李昭东, 等..Nb-V微合金化低钼型Q345耐火钢的开发[J]. 钢铁, 2020, 55(11):91.(CHEN Lin-heng, WANG Wen-tao, LI Zhao-dong, et al. Development of Nb-V microalloying and low Mo alloyed Q345 fire-resistant steel[J]. Iron and steel, 2020, 55(11):91.)
[15] 余大江, 高加强, 赵四新. Nb对C38+N2非调质钢组织和力学性能的影响[J]. 中国冶金, 2021, 31(5):92.(YU Da-jiang, GAO Jia-qiang, ZHAO Si-xin. Effect of Nb on microstructure and mechanical properties of non-quenched and tempered steel C38+N2[J]. China Metallurgy, 2021, 31(5):92.)
[16] 郝飞翔, 傅余东, 严明, 等. Nb微合金化HRB400E钢筋的试制[J]. 轧钢, 2020, 37(3):101.(HAO Fei-xiang, FU Yu-dong, YAN Ming, et al. Trial production of niobium microalloyed HRB400E ribbed bar[J]. Steel Rolling, 2020,37(3):101.)
[17] 沈奎, 江卓俊, 于学森, 等. 微合金化铌钒对高碳钢组织转变影响[J]. 特殊钢, 2019, 40(4):62.(SHEN Kui, JIANG Zhuo-jun, YU Xue-sen, et al. Effect of Nb-V microalloyed on phase transformation behavior of high carbon steel[J]. Special Steel, 2019, 40(4):62.)
[18] 巫宇峰. 钒微合金化中碳非调质钢组织转变及强化机制研究[D]. 昆明:昆明理工大学, 2016.(WU Yu-feng. Study on Microstructure Transformation and Strengthening Mechanism of V Microalloyed Medium Carbon Non-Quenched and Tempered Steel[D]. Kunming:Kunming University of Technology, 2016.)
[19] 赵贤平, 邓深, 余轶峰, 等. 铌微合金化HRB400E高强钢筋CCT曲线测定及应用[J]. 中国冶金, 2019, 29(8):58.(ZHAO Xian-ping, DENG Shen, YU Yi-feng, et al. Measurement and application of CCT curve of NB microalloyed HRB400E high-strength rebar[J]. China Metallurgy, 2019, 29(8):58.)
[20] 冯锐. 铁素体/珠光体型钢板内部质量及其影响因素研究[D]. 济南:山东大学. 2013.(FENG Rui. Research on Internal Quality and Its Influeneing Factors of Fernite/Pearite Steel Plate[D]. Jinan:Shandong University, 2013.)

基金

国家自然科学基金资助项目(52031004); 上海市军民融合发展专项资金资助项目(2020-jmrh1-kj31)

PDF(3199 KB)

23

Accesses

0

Citation

Detail

段落导航
相关文章

/