为了探明钒添加量对X80级管线钢奥氏体化过程的影响,通过Thermo-Calc热力学计算、奥氏体化加热处理、金相分析及理论模型推导计算,研究了含钒质量分数分别为0、0.042%、0.084%、0.130%的4种试验钢在不同奥氏体化温度下的晶粒尺寸变化规律并分析计算了含钒试验钢奥氏体晶粒长大动力学行为。结果表明,当均热温度小于1 050 ℃时,4种不同钒含量试验钢奥氏体晶粒尺寸及变化趋势相近;但当均热温度大于1 050 ℃时,不含钒试验钢的奥氏体晶粒尺寸明显高于含钒试验钢。随着钒含量升高,钢中含钒析出相数量增多,但因其全固溶温度低,钒含量对含钒钢的奥氏体晶粒长大影响较小。试验钢的奥氏体晶粒尺寸随着奥氏体化温度的升高而增加,在均热温度为850~900 ℃时,晶粒缓慢长大;当均热温度高于1 200 ℃时,奥氏体晶粒发生急剧长大,4种试验钢奥氏体晶粒尺寸随着均热温度升高均近似呈指数形式增长。在相同的奥氏体化温度下,奥氏体晶粒尺寸随着保温时间的增加而变大,且长大速率逐渐降低。利用试验测得数据并结合晶粒长大动力学理论,建立了2号钢(添加钒质量分数为0.042%的试验钢)奥氏体晶粒长大规律的动力学数学模型公式,经验证拟合度良好。通过研究和获得的试验结论,可为含钒X80级管线钢的控轧控冷工艺参数设计与工程化应用提供理论依据。
Abstract
In order to make clear the influence of vanadium addition on the austenitizing process of X80 pipeline steel, the austenite grain growth behavior of 4 experiment steels with different vanadium contents (0%, 0.042%, 0.084%, 0.130%) under different austenitizing temperatures was investigated, and the austenite grain growth kinetics in the experimental steel was analyzed and calculated by Thermo-Calc thermodynamic calculation, austenitizing heating treatment, metallographic analysis and theoretical model derivation and calculation. The results show that as the soaking temperature is lower than 1 050 ℃, the austenite grain size and change trend of 4 experimental steels with different vanadium contents are similar. But when the soaking temperature is higher than 1 050 ℃, the austenite grain size of vanadium free experimental steel is significantly higher than that of experimental steels containing vanadium. With vanadium contents increasing, the number of vanadium containing precipitates increasesHowever, due to its low solution temperature, vanadium content has little effect on austenite grain growth of vanadium containing steels. The austenite grain size of experimental steel grew up with the increase of austenitizing temperature. When the soaking temperature was in the range of 850-900 ℃, the austenite grains grew slowly, while the austenite grain sizes increased rapidly when the soaking temperature was higher than 1 200 ℃. The austenite grain sizes of 4 experimental steels increased exponentially with the increase of soaking temperature. At the same austenitizing temperature, the austenite grain size increased with the increase of soaking time, and the growth rate gradually decreased. The measured experimental data combined with the grain growth kinetics theory were used to establish a mathematical model of No.2 experimental steel containing 0.042% vanadium content, 公式, which was verified and fitting result was good. The research and experimental conclusions obtained in this paper can provide a theoretical basis for the thermo mechanical control process parameter design and engineering application of vanadium containing X80 pipeline steel.
关键词
钒 /
X80级管线钢 /
奥氏体化 /
晶粒长大 /
数学模型
{{custom_keyword}} /
Key words
vanadium /
X80 pipeline steel /
austenitization /
grain growth /
mathematical model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郑磊, 傅俊岩. 高等级管线钢的发展现状[J]. 钢铁, 2006, 41(10): 1. (ZHENG Lei, FU Jun-yan. Recent development of high performance pipeline steel[J]. Iron and Steel, 2006, 41(10): 1.)
[2] 蒋昌林, 林涛, 诸建阳. 加热温度对X80钢级弯管用管线钢板冲击韧性的影响[J]. 宽厚板, 2019, 25(4): 5. (JIANG Chang-lin, LIN Tao, ZHU Jian-yang. The effect of reheating temperature on impact toughness of X80 grade pipeline plate for elbow[J]. Wide and Heavy Plate, 2019, 25(4): 5.)
[3] 王明明, 高秀华, 杜林秀, 等. V-N微合金化X80抗大变形管线钢的组织与力学性能[J]. 东北大学学报(自然科学版), 2020, 41(6): 801. (WANG Ming-ming, GAO Xiu-hua, DU Lin-xiu, et al. Microstructure and mechanical properties of V-N microalloyed X80 high deformability pipeline steel[J]. Journal of Northeastern University (Natural Science), 2020, 41(6): 801.)
[4] 段贺, 单以银, 杨柯, 等. X80低温用高强度管线钢的工艺与组织性能试验[J]. 钢铁, 2020, 55(2): 103. (DUAN He, SHAN Yi-yin, YANG Ke, et al. Experimental on process, microstructure and mechanical properties of X80 high strength pipeline steel for low temperature[J]. Iron and Steel, 2020, 55(2): 103.)
[5] 袁天祥, 张丙龙, 刘延强, 等. 高级别管线钢夹杂物控制研究[J]. 中国冶金, 2020, 30(11): 85. (YUAN Tian-xiang, ZHANG Bing-long, LIU Yan-qiang, et al. Study on inclusion control of high grade pipeline steel[J]. China Metallurgy, 2020, 30(11): 85.)
[6] 聂文金, 林涛铸, 郭志龙, 等. 低温高强韧性管线钢组织细化工艺的研究和应用[J]. 上海金属, 2021, 43(3):7. (NIE Wen-jin, LIN Tao-zhu, GUO Zhi-long, et al. Research and application of microstructure refining technology of low-temperature high-strength and high-toughness pipeline steel[J]. Shanghai Metals, 2021, 43(3), 7.)
[7] 张阳, 王福明, 唐郑磊, 等. SXQ500/550D钢奥氏体晶粒长大行为及其影响因素[J]. 金属热处理, 2019, 44(8): 110. (ZHANG Yang, WANG Fu-ming, TANG Zheng-lei, et al. Austenite grain growth behavior and its influencing factors of SXQ500/550D steel[J]. Heat Treatment of Metals, 2019, 44(8): 110.)
[8] 陶素芬, 王福明, 于乔木, 等. 奥氏体化温度及时间对EQ70钢晶粒尺寸的影响[J]. 材料热处理学报, 2013, 34(11): 42. (TAO Su-fen, WANG Fu-ming, YU Qiao-mu, et al. Effect of austenitizing temperature and holding time on austenite grain size of EQ70 steel[J]. Transactions of Materials and Heat Treatment, 2013, 34(11): 42.)
[9] 熊国源, 刘利华, 朱文涛. 奥氏体化温度对40CrNiMo钢组织和性能的影响[J]. 中国冶金, 2021, 31(7): 30. (XIONG Guo-yuan, LIU Li-hua, ZHU Wen-tao. Effect of austenizing temperature on microstructure and mechanical properties of 40CrNiMo steel[J]. China Metallurgy, 2021, 31(7): 30.)
[10] Li X D, Ma X P, Subramanian S V, et al. Influence of prior austenite grain size on martensite-austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel[J]. Materials Science and Engineering: A, 2014, 616: 141.
[11] 刘华松, 董延楠, 郑宏光, 等. Nb微合金化对齿轮钢高温渗碳奥氏体晶粒度的影响[J]. 钢铁研究学报, 2021, 33(8): 828. (LIU Hua-song, DONG Yan-nan, ZHENG Hong-guang, et al. Influence of Nb microalloying on grain size of austenite in high-temperature carburized gear steel[J]. Journal of Iron and Steel Research, 2021, 33(8): 828.)
[12] 张帅, 任毅, 王爽, 等. 轧制与冷却工艺对高强度管线用宽厚钢板组织与性能的影响[J]. 上海金属, 2019, 41(5): 53. (ZHANG Shuai, REN Yi, WANG Shuang, et al. Influence of rolling and cooling processes on microstructure and performance of high-strength wide and heavy steel plate for pipeline[J]. Shanghai Metals, 2019, 41(5): 53.)
[13] 刘文月, 任毅, 王爽, 等. 钢中奥氏体晶粒长大规律[J]. 上海金属, 2019, 41(4): 88. (LIU Wen-yue, REN Yi, WANG Shuang, et al. Austenite grain growth behavior in steels[J]. Shanghai Metals, 2019, 41(4): 88.)
[14] 刘祥, 杜群力, 李新. 加热工艺对Nb-Ti微合金钢奥氏体晶粒长大的影响[J]. 钢铁, 2019, 54(9): 116. (LIU Xiang, DU Qun-li, LI Xin. Effect of heating process on grain growth of Nb-Ti microalloyed steel[J]. Iron and Steel, 2019, 54(9): 116.)
[15] 于建国, 乔桂英. Nb(C,N)溶解对高铌奥氏体晶粒长大行为的影响[J]. 中国冶金, 2019, 29(5): 49. (YU Jian-guo, QIAO Gui-ying. Effect of Nb(C,N) dissolution on growth behavior of high Nb austenite grains[J]. China Metallurgy, 2019, 29(5): 49.)
[16] 巫宇峰, 惠卫军, 陈思联, 等. 不同钒含量中碳非调质钢的奥氏体晶粒长大行为[J]. 材料热处理学报, 2016, 37(1): 36. (WU Yu-feng, HUI Wei-jun, CHEN Si-lian, et al. Austenite grain growth behabior of medium carbon microalloyed forging steels with different vanadium contents[J]. Transactions of materials and heat treatment, 2016, 37(1): 36.)
[17] YANG G W, SUN X J, LI Z D, et al. Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel[J]. Materials and Design, 2013, 50: 102.
[18] Nafisi S, Amirkhiz B S, Fazeli F, et al. Effect of vanadium addition on the strength of API X100 linepipe steel[J]. ISIJ International, 2016. 56(1): 154.
[19] Nafisi S, Arafin M, Glodowski R, et al. Impact of vanadium addition on API X100 steel[J]. ISIJ International, 2014, 54(10): 2404.
[20] Show B K, Veerababu R, Balamuralikrishnan R, et al. Effect of vanadium and titanium modification on the microstructure and mechanical properties of a microalloyed HSLA steel[J]. Materials Science and Engineering: A, 2010, 527(6): 1595.
[21] Turk A, Martin D S, Rivera-Diaz-del-Castillo P E J, et al. Correlation between vanadium carbide size and hydrogen trapping in ferritic steel[J]. Scripta Materialia, 2018, 152: 112.
[22] Takahashi J, Kawakami K, Tarui T. Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography[J]. Scripta Materialia, 2012, 67(2): 213.
[23] LI L F, SONG B, CAI Z Y, et al. Effect of vanadium content on hydrogen diffusion behaviors and hydrogen induced ductility loss of X80 pipeline steel[J]. Materials Science and Engineering: A, 2019, 742: 712.
[24] 雍歧龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. (YONG Qi-long. Secondary Phases in Steel[M]. Beijing: Metallurgical Industry Press, 2006.)
[25] LI L F, SONG B, YANG B W, et al. Effect of tempering temperature after thermo-mechanical control process on microstructure characteristics and hydrogen-induced ductility loss in high-vanadium X80 pipeline steel[J]. Materials, 2020, 13: 2839.
[26] 周国十, 张红梅, 贾宏斌. X100管线钢奥氏体晶粒长大行为[J]. 金属热处理, 2015, 40(9): 71. (ZHOU Guo-shi, ZHANG Hong-mei, JIA Hong-bin. Austenite grain growth behavior of X100 pipeline steel[J]. Heat Treatment of Metals, 2015, 40(9): 71.)
[27] 祝成波, 申邦坡. X100管线钢中奥氏体晶粒长大规律研究[J]. 热加工工艺, 2013, 42(12): 70. (ZHU Cheng-bo, SHEN Bang-po. Study on austenite grain growth behavior of X100 pipeline steel[J]. Hot Working Technology, 2013, 42(12): 70.)
[28] Manohar P A, Dunne D P, Chandra T, et al. Grain growth predictions in microalloyed steels[J]. ISIJ International, 1996, 36(2): 83.
[29] Lee S J, Lee Y K. Prediction of austenite grain growth during austenitization of low alloy steels[J]. Materials and Design, 2008, 29(9):1840.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家重点研发计划资助项目(2017YFB07B030400)
{{custom_fund}}