基于绿色钢铁的转炉炼钢工艺设计及生产

吴耀光, 杨风国, 王阳明, 王东, 王雁, 朱立光

钢铁 ›› 2022, Vol. 57 ›› Issue (11) : 77-86.

PDF(5270 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月28日 星期一
PDF(5270 KB)
钢铁 ›› 2022, Vol. 57 ›› Issue (11) : 77-86. DOI: 10.13228/j.boyuan.issn0449-749x.20220227
炼钢

基于绿色钢铁的转炉炼钢工艺设计及生产

  • 吴耀光1, 杨风国2, 王阳明1, 王东3, 王雁4, 朱立光5
作者信息 +

Converter steelmaking process design and production based on green steel

  • 吴耀光1, 杨风国2, 王阳明1, 王东3, 王雁4, 朱立光5
Author information +
文章历史 +

摘要

“碳达峰”和“碳中和”目标的提出,使得绿色钢铁的概念受到广泛关注。绿色钢铁不仅是指钢铁企业的排放指标优良、环境优美,更是要打造工艺优化、设备优化、流程优化的铁素流、能量流和信息流“三流归集”的低碳、低成本的生产线,实现企业从设计、建造、生产到淘汰的全寿命成本最低的目标。当前以降低生产排放,合理循环利用为主要目的的长流程生产工艺,以副枪+动态控制的自动炼钢,集成废钢预热、一罐到底、钢包加盖、合金烘烤、下渣检测、滑板挡渣、余热回收利用、干式一次除尘+二、三次除尘+散点除尘、钢渣综合利用等设备和技术,在已投产的项目取得了良好的效果,且仍在持续改进和提高。此外,在进行平面设计和工艺设计时,应充分利用场地天然地势高差,重视降低生产运行成本。同时,生产企业还应培养建立绿色钢铁生产的专业化人才队伍,注重从生产管理入手,规范信息管理,优化生产调度和工序衔接,提高全流程的物质转化与能量转换效率。建立着眼于从原料到成品的全流程的物质流、能量流和信息流的管理,实现以产品质量定原料的“定制化”生产模式。以打造全寿命成本最低的钢铁企业为目标,开发涵盖工厂设计、建造和生产运行的全寿命智能管理软件,管控全寿命周期内的各阶段成本,从而实现真正意义上的绿色钢铁生产。

Abstract

The proposal of "carbon peak" and "carbon neutrality" has made the concept of green steel attract widespread attention. Green steel not only refers to the excellent emission indicators and beautiful environment of iron and steel enterprises, but also means to build a low carbon and cost production line that integrates process optimization, equipment optimization, and process optimization of "three-flow collection" which ferrite flow, energy flow and information flow, achieved the goal of the lowest life-cycle cost of the enterprise from design, construction, production to elimination. The current long-process production process with the main purpose of reducing production emissions and rational recycling, through automatic steelmaking with sublance and dynamic control, integrated equipment and technologies such as scrap preheating, one tank to the end, ladle capping, alloy baking, slag detection, sliding plate slag blocking, waste heat recycling, dry primary dedusting, secondary, tertiary and scattered dedusting, and comprehensive utilization of steel slag, good results have been achieved in the projects that have been put into production, and they are still improving. In addition, when carrying out layout and process design, the natural terrain height difference of the site should be fully utilized, and attention should be paid to reducing production and operation. At the same time, production enterprises should also cultivate and establish a professional talent team for green steel production, focus on standardizing information management from production management, optimize production scheduling and process connection, and improve the efficiency of material conversion and energy conversion in the whole process. Enterprise should establish the management of material flow, energy flow and information flow focusing on the whole process from raw materials to finished products, and realize the "customized" production mode that determines raw material based on product quality. Design enterprise should aiming to build an iron and steel enterprise with the lowest life-cycle cost, develop life-cycle intelligent management software covering plant design, construction and production operation, and manage and control the cost of each stage in the life-cycle, so as to realize green steel production in the true sense.

关键词

绿色钢铁 / 转炉炼钢工艺 / 工艺设计 / 平面设计 / 生产管理

Key words

green steel / converter steelmaking process / process design / layout design / production management

图表

引用本文

导出引用
吴耀光, 杨风国, 王阳明, . 基于绿色钢铁的转炉炼钢工艺设计及生产[J]. 钢铁, 2022, 57(11): 77-86 https://doi.org/10.13228/j.boyuan.issn0449-749x.20220227
WU Yao-guang, YANG Feng-guo, WANG Yang-ming, et al. Converter steelmaking process design and production based on green steel[J]. Iron and Steel, 2022, 57(11): 77-86 https://doi.org/10.13228/j.boyuan.issn0449-749x.20220227

参考文献

[1] 李新创, 李冰. 全球温控目标下中国钢铁工业低碳转型路径[J]. 钢铁, 2019, 54(8):224. (LI Xin-chuang, LI Bing. Low carbon transition path of China's iron and steel industry under global temperature control target[J]. Iron and Steel, 2019, 54(8):224.)
[2] 孙建新,张继强. 提高转炉废钢比的整体解决方案[J]. 炼钢, 2018, 34(5): 19. (SUN Jian-xin, ZHANG Ji-qiang. General solved methods of increasing steel scrap ratio for converter[J]. Steelmaking, 2018, 34(5): 19.)
[3] 佟迎. 韶钢120 t铁水包加废钢提升废钢比生产实践[J]. 南方金属, 2019,229(4):33. (TONG Ying. Production practice of raising scrap ratio by adding scrap into 120 t ladle at SGIS[J]. Southern Metals, 2019,229(4):33.)
[4] 杨得军. 铁水包废钢预熔预热新工艺在某钢铁公司的应用[J]. 中国金属通报, 2020,5004(3):131. (YANG De-jun. Application of a new process of pre-melting preheating of molten iron scrap in a steel company[J]. China Metal Bulletin, 2020, 5004(3):131.)
[5] 孙立彬. 转炉废钢连续预热加料系统的原理及应用[J]. 大众标准化, 2019,305(12):90. (SUN Li-bin. Principle and application of converter scrap continuous preheating feeding system[J]. Popular Standardization, 2019,305(12):90.)
[6] 方文, 杨宁川, 游香米, 等. 高效低耗转炉大废钢比技术路径研究[J]. 炼钢, 2020, 36(6): 8. (FANG Wen, YANG Ning-chuan, YOU Xiang-mi, et al. Research on high efficiency low consumption high scrap ratio converter[J]. Steelmaking, 2020, 36(6): 8.)
[7] 雷浩洪, 吕凯辉. 炼铁-炼钢界面布局紧凑模式[J]. 中国冶金, 2021, 31(4):64. (LEI Hao-hong, LÜ Kai-hui. Compact layout mode of ironmaking steelmaking interface[J]. China Metallurgy, 2021, 31(4):64.)
[8] 张月星, 安永超, 刘绍明, 等. 迁钢210t钢包全程加盖工艺及实践[J]. 中国冶金, 2019, 29(4):60. (ZHANG Yue-xing, AN Yong-chao, LIU Shao-ming, et al. Process and practice of 210 t ladle capping in Qiansteel[J]. China Metallurgy,2019, 29(4):60.)
[9] 张东, 韩宇, 李彦军, 等. 高效合金烘烤在转炉炼钢中的应用[J]. 中国冶金, 2017, 27(2):70. (ZHANG Dong, HAN Yu, LI Yan-jun, et al. Application of high efficiency alloy baking in converter steelmaking[J]. China Metallurgy, 2017, 27(2):70.)
[10] 李建新, 王新东, 李双江. 河钢炼钢技术进步与展望[J]. 炼钢, 2019, 35(4):1. (LI Jian-xin, WANG Xin-dong, LI Shuang-jiang. Progress and prospects of steelmaking technology in Hesteel[J]. Steelmaking, 2019, 35(4):1.)
[11] 赵铮, 肖雷. 钢铁企业余热发电系统的选择[J]. 河北冶金, 2020,6(增刊1): 90. (ZHAO Zheng, XIAO Lei. Selection of waste heat power gene ration system in iron and steel enterprises[J]. Hebei Metallurgy, 2020, 6(s1): 90.)
[12] 张俊, 严定鎏, 齐渊洪, 等. 钢铁冶炼渣的处理利用难点分析[J]. 钢铁,2020, 55(1):1. (ZHANG Jun, YAN Ding-liu, QI Yuan-hong, et al. Difficulty analysis on treatment and utilization of iron and steel smelting slag[J]. Iron and Steel, 2020, 55(1):1.)
[13] 张衍国,李清海,徐可培.一种冶金熔渣粒化及其热能回收系统与方法:中国,CN201410671009.5[P].2015-03-04.(ZHANG Yan-guo, LI Qing-hai, XU Ke-pei. System and Method for Granulating Metallurgical Slag and Recovering Thermal Energy of Metallurgical Slag: China, CN20141067-1009.5[P].2015-03-04.)
[14] 司金凤. 浅析钢铁工业固体废弃物资源利用技术的应用[J]. 山东冶金, 2021, 43(5): 62. (SI Jin-feng. Utilization of solid waste resources in iron and steel industry and new technological progress[J]. Shandong Metallurgy, 2021, 43(5): 62.)
[15] 张垚. 炼钢转炉中干法除尘工艺的应用研究[J]. 山西冶金,2020, 42(2):73. (ZHANG Yao. Application of rectifying a deviation with three groups wringer rollers in pickling process section[J]. Shanxi Metallurgy, 2020, 42(2): 73.)
[16] 艾晓琴. 转炉炼钢除尘灰的产生和利用[J]. 山西冶金, 2020, 43(4):94. (AI Xiao-qin. Production and utilization of converter dust ash[J]. Shanxi Metallurgy,2020, 43(4):94.)
[17] 王少峰. 对炼钢除尘灰进行冷固造球生产的探索[J]. 河南冶金, 2020, 28(159): 26. (WANG Shao-feng. Study on the production of cold solid pelletizing for dedusting ash of steelmaking[J]. Henan Metallurgy, 2020, 28(159): 26.)
[18] 侯洪宇, 马光宇, 徐鹏飞, 等. 鞍钢节能减排新技术研究与开发[J]. 鞍钢技术, 2019, 420(6):16. (HOU Hong-yu, MA Guang-yu, XU Peng-fei, et al. Research and development of new technologies for energy saving and reduction of emissions by Ansteel[J]. Angang Technology, 2019, 420 (6):16.)
[19] Rob Boom, Chris Twigge-Molecey, Frank Wheeler, et al. Metallurgicla Plant Design[M]. Quebec: Canadian Institute of Mining, Metallurgy and Petroleum, 2015.
[20] 郑忠, 连小圆, 沈薪月, 等. 钢铁生产流程物质转化与能量转换评价指标[J]. 钢铁, 2021, 56(6): 120. (ZHENG Zhong, LIAN Xiao-yuan, SHEN Xin-yue, et al. Evaluation indexes of material transformation and energy conversion in iron and steel production[J]. Iron and Steel, 2021, 56(6): 120.)
[21] 韩伟刚, 胡长庆. 基于熵的钢铁制造流程运行有序性评价模型[J]. 钢铁, 2021, 56(5): 122. (HAN Wei-gang, HU Chang-qing. An entropy-based evaluation model of operation order of steel manufacturing process[J]. Iron and Steel, 2021, 56(5): 122.)
[22] 邵鑫, 杨建平, 王柏琳, 等. 炼钢-连铸区段多工序运行协同控制[J]. 钢铁,2021, 56(8):101. (SHAO Xin, YANG Jian-ping, WANG Bai-lin, et al. Cooperative control of multi process operation in steelmaking continuous casting section[J]. Iron and Steel, 2021, 56(8): 101.)
[23] 高春华. 低碳经济对我国钢铁产品出口的影响探析[J]. 对外经贸实务, 2015,321(10):35. (GAO Chun-hua. Analysis of the impact of low-carbon economy on China's steel product exports[J]. Practice in Foreign Economic Relations and Trade, 2015,321(10):35.)
[24] 于立梅, 张若鹏, 任翠英. 钢铁行业低碳发展标准体系建设研究[J]. 中国冶金, 2021, 31(9): 135. (YU Li-mei, ZHANG Ruo-peng, REN Cui-ying. Research on establishing standards system of low-carbon development for iron and steel industry[J]. China Metallurgy, 2021, 31(9): 135.)

基金

国家自然科学基金青年基金资助项目(52004094); 河北省自然科学基金资助项目(E2021209037)

PDF(5270 KB)

Accesses

Citation

Detail

段落导航
相关文章

/