低活化铁素体/马氏体(RAFM)钢具有较低的辐照肿胀率和优异的力学性能,被认为是聚变堆首选的结构材料。然而,低活化钢强度高、冷塑性变形抗力大的特点,使其难以通过冷加工或低温加工实现大规模生产。使用MMS-200型热模拟试验机,在变形温度为950~1 200 ℃、应变速率为0.1~5 s-1和最大变形量为50%条件下,进行了低活化铁素体/马氏体钢(0.11C-9.4Cr-1.35W-0.22V-0.05Si-0.11Ta-0.50Mn)单道次热压缩试验,研究其热变形行为。基于动态材料模型构建了不同应变量下的低活化钢变形本构方程和热加工图,确定了最优热加工参数,结合金相结果分析了材料变形过程中微观组织演化规律,为低活化钢的热加工成形工艺及组织优化提供理论参考。结果表明,在相同应变速率下,随着变形温度升高,流变应力逐渐降低,在一定变形温度下,流变应力随应变速率增大而增大;温度和应变速率对组织的影响主要取决于变形过程中材料内部发生的动态回复和再结晶等机制的交互作用。使用六阶多项式拟合进行应变补偿建立的低活化钢变形本构方程具有较高的预测精度,平方相关系数为0.972。显微组织和热加工图分析结果表明,温度升高为再结晶提供了充足能量,材料软化机制由动态回复转变为动态再结晶;减小应变速率,能量有足够时间扩散,有利于动态再结晶的进行;在变形温度为1 060~1 130 ℃、应变速率为0.13~0.36 s-1条件下和合金耗散系数η达到36%的最佳热加工参数范围,可获取到均匀动态再结晶组织。
Abstract
Reduced activation ferritic martensitic (RAFM) steels have low irradiation swelling rates and excellent mechanical properties,which are considered to be the preferred structural materials for fusion reactors. However,the high strength of RAFM steels and the high resistance to cold plastic deformation make it difficult to achieve large-scale production through cold or low-temperature processing. The thermal simulation compression test investigated the single-pass thermal compression experiment of the RAFM steel(0.11C-9.4Cr-1.35W-0.22V-0.05Si-0.11Ta-0.50Mn) in the MMS-200 thermal simulator under the temperature of 950 ℃ to 1 200° C,strain rate of 0.01 s-1 to 5 s-1,and maximum deformation of 0.5. Based on the dynamic material model,a strain compensation constitutive equation and hot processing map of RAFM steel under different strain rates were constructed,and the optimal hot deformation parameters were determined. The law of microstructure evolution during the deformation process was observed by a metallographic microscope,which provides a theoretical reference for the hot processing forming process and microstructure optimization of RAFM steel. The results show that the flow stress of nuclear power steel gradually decreases with the increase of deformation temperature at the same strain rate,and the flow stress increases with the increase of strain rate at a certain deformation temperature. The effect of temperature and strain rate on the microstructure is mainly determined by the dynamic,recrystallization,and other softening mechanisms that occur inside the metal. The mathematical model of RAFM steel was established by a sixth-order polynomial. It has high prediction accuracy with a square correlation coefficient of 0.972. The results show that the rising temperature provides sufficient energy for recrystallization,and the softening mechanism of materials changed from dynamic recovery to dynamic recrystallization. When the strain rate decreases,the energy has enough time to diffuse,which is beneficial to dynamic recrystallization. The optimal range of hot processing parameters for obtaining a uniform dynamic recrystallized structure of RAFM steel is that the deformation temperature is 1 060-1 130 ℃,the strain rate is 0.13-0.36 s-1,and the alloy dissipation coefficient η reaches 36%.
关键词
低活化铁素体/马氏体钢 /
热流变 /
动态再结晶 /
本构方程 /
热加工图
{{custom_keyword}} /
Key words
RAFM steel /
thermal flow /
dynamic recrystallization /
constitutive equation /
hot processing map
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张蕴. 双碳目标下我国核电发展趋势分析[J]. 核科学与工程,2021,41(6):1347. (ZHANG Yun. Analysis on the development trend of nuclear energy in China under the dual carbon target[J]. Nuclear Science and Engineer,2021,41(6):1347.)
[2] QIU G X,ZHAN D P,CAO L,et al. Effect of zirconium on inclusions and mechanical properties of China low activation martensitic steel[J]. Journal of Iron and Steel Research, International,2021,28(9):1168.
[3] Tan L,Snead L L,Katoh Y. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors[J]. Journal of Nuclear Materials,2016,478:42.
[4] Kim B H,Jang J H,Seol W K,et al. Effect of Ti addition on hardness change during tempering in reduced activation ferritic/martensitic (RAFM) steels[J]. Journal of Nuclear Materials:Materials Aspects of Fission and Fusion,2018,508:595.
[5] QIU G X,ZHAN D P,CAO L,et al. Review on development of reduced activated ferritic/martensitic steel for fusion reactor[J]. Journal of Iron and Steel Research,International,2022,https://doi.org/10.1007/s42243-022-00796-2.
[6] Dai Y,Gavillet D,Restani R. Stressed capsules of austenitic and martensitic steels irradiated in SINQ target-4 in contact with liquid lead-bismuth eutectic[J]. Journal of Nuclear Materials,2008,377(1):225.
[7] QIU G X,DU Q,LI X M,et al. Strengthening effect of multiscale second phases in reduced activation ferrite/martensitic steel[J]. Steel Research International,2022,4(93):202100430.
[8] 付海英,王平怀,谌继明. CLF-1低活化铁素体/马氏体钢的热处理工艺[J]. 机械工程材料,2010,34(1):28.(FU Hai-ying,WANG Ping-huai,ZHAN Ji-ming. Heat treatment process for CLF-1 reduced activation ferritic/martensitic steel[J]. Materials for Mechanical Engineering,2010,34(1):28.)
[9] WANG W T,GUO X Z,HUANG B,et al. The flow behaviors of CLAM steel at high temperature[J]. Materials Science and Engineering A,2014,599:134.
[10] CAO Y,DI H,ZHANG J,et al. Dynamic behavior and microstructural evolution during moderate to high strain rate hot deformation of a Fe-Ni-Cr alloy (alloy 800H)[J]. Journal of Nuclear Materials,2015,456:133.
[11] HU H E,ZHEN L,ZHANG B Y,et al. Microstructure characterization of 7050 aluminum alloy during dynamic recrystallization and dynamic recovery[J]. Materials Characterization,2008,59:1185.
[12] LI J,LIU Y,WANG Y,et al. Dynamic recrystallization behavior of an as-cast TiAl alloy during hot compression[J]. Materials Characterization,2014,97:169.
[13] Prasad Y. Author's reply:Dynamic materials model:Basis and principles[J]. Metallurgical and Materials Transactions A,1996,27(1):235.
[14] 丁文圆,宋庆华,赵飞,等. CLAM钢的热变形行为及热加工图[J]. 原子能科学技术,2018,52(6):1077. (DING Wen-yuan,SONG Qing-hua,ZHAO Fei,et al. Hot deformation behavior and processing map of CLAM steel[J]. Atomic Energy Science and Technology,2018,52(6):1077.)
[15] Shah N S,Chakravartty J K,Sarkar A. Comparative study on hot deformation behaviour of P91,RAFM-CLAM and low C RAFM-CLAM steels by processing maps[J]. Fusion Engineering and Design,2019,138:109.
[16] 赵宏禹,刘荣佩,王长军,等. 9 Ni马氏体不锈钢的热变形行为及其能量耗散图[J]. 钢铁,2018,53(9):74. (ZHAO Hong-yu,LIU Rong-pei,WANG Chang-jun,et al. Hot deformation behavior and energy dissipation diagram of 9 Ni martensite stainless steel[J]. Iron and Steel,2018,53(9):74.)
[17] 张世伟,杨明,梁益龙,等. 20CrNi2Mo钢高温变形的本构方程与动态再结晶行为[J]. 钢铁,2017,52(8):97.(ZHANG Shi-wei,YANG Ming,LIANG Yi-long,et al. Constitutive equations and dynamic recrystallization behaviors of 20CrNi2Mo steel at stage of high temperature deformation[J]. Iron and Steel,2017,52(8):97.)
[18] 闫洞旭,方实年,蒲春雷,等. 高强钢筋热压缩过程的本构分析及有限元模拟[J]. 中国冶金,2021,31(3):50. (YAN Dong-xu,FANG Shi-nian,PU Chun-lei,et al. Constitutive analysis and finite element simulation of high-strength rebar during hot compressionprocess[J]. China Metallurgy,2021,31(3):50.)
[19] 王庆娟,王钦仁,杜忠泽,等. 40Cr10Si2Mo钢的热变形模型及动态再结晶行为[J]. 钢铁,2021,56(11):112. (WANG Qing-juan,WANG Qin-ren,DU Zhong-ze,et al. Hot deformation model and dynamic recrystallization behavior of 40Cr10Si2Mo steel[J]. Iron and Steel,2021,56(11):112.)
[20] Sellars C M,Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica,1966,14(9):1136.
[21] 梁剑雄,雍岐龙,张良,等. 1Cr17 Ni1双相不锈钢的热变形行为及其热加工图[J]. 钢铁,2016,51(9):82. (LIANG Jian-xiong,YONG Qi-long,ZHANG Liang,et al. Hot deformation behavior and its processing map of 1Cr17 Ni1 duplex stainless steel[J]. Iron and Steel,2016,51(9):82.)
[22] Zener C,Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics,1944,15(1):22.
[23] 李凯强,杨银辉,钱昊,等. 03Cr18 NiMoN节镍双相不锈钢的热变形行为及热加工图[J]. 钢铁研究学报,2019,31(6):563. (LI Kai-qiang,YANG Yin-hui,QIAN Hao,et al. Hot deformation behavior and hot working drawing of 03Cr18 NiMoN low-nickel duplex stainless steel[J]. Journal of Iron and Steel Research,2019,31(6):563.)
[24] 任培东. 310S耐热不锈钢热变形行为及热加工图[J]. 中国冶金,2017,27(7):34. (REN Pei-dong. Hot deformation behavior and hot processing maps of 310S heat-resistance stainless steel[J]. China Metallurgy,2017,27(7):34.)
[25] 吕建平,王晓辉,刘振宝,等. Custom 450钢热加工图及显微组织分析[J]. 钢铁,2021,56(6):112. (LÜ Jian-ping,WANG Xiao-hui,LIU Zhen-bao,et al. Hot processing map and corresponding microstructural analysis of Custom 450 sainless steel[J]. Iron and Steel,2021,56(6):112.)
[26] 刘坚,霍庆辉,汪宏斌,等. 圆盘剪用YC1钢的热变形行为及热加工图[J]. 上海金属,2022,44(4):76. (LIU Jian,HUO Qing-hui,WANG Hong-bin,et al. Hot deformation behavior and hot working map of YC1 steel for circular shear[J]. Shanghai Metals,2022,44(4):76.)
[27] 刘发. 3Cr13马氏体不锈钢的高温热变形行为研究[J]. 中国冶金,2015,25(10):38. (LIU Fa. Research on thermal deformation behavior of matensitic strainless steel in 3Cr13[J]. China Metallurgy,2015,25(10):38.)
[28] 刘宏霞,宋源,秦世宇,等. 低温建筑用高强度低合金钢的高温变形行为[J]. 上海金属,2022,44(1):28. (LIU Hong-xia,SONG Yuan,QIN Shi-yu,et al. High-temperature deformation behavior of high-strength low-alloy steel for low-temperature building[J]. Shanghai Metals,2022,44(1):28.)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
陕西省自然科学基金青年资助项目(2021JQ-502); 河北省自然科学基金资助项目(E2021417001)
{{custom_fund}}