不同铝含量的脱氧剂对钢液洁净度的影响

赵一将, 李光强, 孟泽, 王肸杰, 赵睿, 刘昱

钢铁 ›› 2023, Vol. 58 ›› Issue (1) : 47-54.

PDF(3526 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月28日 星期一
PDF(3526 KB)
钢铁 ›› 2023, Vol. 58 ›› Issue (1) : 47-54. DOI: 10.13228/j.boyuan.issn0449-749x.20220436
炼钢

不同铝含量的脱氧剂对钢液洁净度的影响

  • 赵一将1, 李光强1,2,3, 孟泽1, 王肸杰1, 赵睿1, 刘昱1,2,3
作者信息 +

Effect of deoxidizer with different Al content on cleanliness of molten steel

  • 赵一将1, 李光强1,2,3, 孟泽1, 王肸杰1, 赵睿1, 刘昱1,2,3
Author information +
文章历史 +

摘要

铝具备较强的脱氧能力,被广泛应用于炼钢过程中钢液的脱氧。然而铝脱氧产生的高熔点、大尺寸Al2O3夹杂物不仅会严重降低钢液的洁净度、恶化钢材韧性和疲劳寿命,还容易造成水口结瘤,影响连铸工艺的顺行。考虑到局部过饱和度对夹杂物的形核和长大等有着重要的影响,采用纯铝和Fe-30%Al合金(质量分数)对钢液进行脱氧,且实际加入的铝量保持一致,通过对不同脱氧时间(30、60 s)的钢液成分和夹杂物特征进行分析,研究了不同铝含量的合金对钢液洁净度的影响。结果表明,相较于纯铝脱氧,Fe-30%Al合金在相同时间节点下脱氧效果更好,合金中铝元素溶解速度更慢。此外,在目前试验条件下使用纯铝脱氧的钢样中夹杂物尺寸可达到9 μm,而使用Fe-30%Al合金脱氧的夹杂物尺寸最大只有4 μm。采用纯铝脱氧60 s后钢中夹杂物平均尺寸为Fe-30%Al合金脱氧的1.35倍,且单位面积夹杂物数量多了23%。两种合金在脱氧过程中残留在钢液中的夹杂物均以多面体夹杂为主,并有少量碰撞聚集形成的松散型团簇状夹杂。使用Fe-30%Al合金脱氧比纯铝脱氧更有利于钢液洁净度的提高,这取决于两者在脱氧初期过程中不同的局部过饱和度。

Abstract

Al possesses strong deoxidation ability, thus is widely used in the deoxidation of molten steel during steelmaking. However, the high melting point and large size Al2O3 inclusions produced by Al deoxidation will not only seriously reduce the cleanliness of molten steel, and deteriorate the toughness and fatigue life of steel, but also easily cause nozzle nodules, which will affect the continuous casting process. Considering that local supersaturation has an important effect on the nucleation and growth of inclusions, pure Al and Fe-30%Al alloy (mass percent) were used to deoxidize the molten steel, and the actual amount of Al addition was consistent, and the effect of Al contents on the cleanliness of the molten steel was studied by analyzing the molten steel composition and inclusion characteristics of different deoxidation times (30, 60 s). The results show that compared with pure Al deoxidation, Fe-30%Al alloy has better deoxidation effect, and the dissolution rate of Al element in the alloy is slower. In addition, the maximum size of inclusions in the steel samples deoxidized with pure Al can reach 9 μm, while that in the test of Fe-30%Al alloy is only 4 μm. The average size of inclusions in the steel after pure Al deoxidation for 60 s is 1.35 times that of Fe-30%Al alloy deoxidation, and the number of inclusions per unit area is increased by 23%. The inclusions remained in the molten steel during the deoxidation process of the two deoxidizers are mainly polyhedral inclusions, and there are some loose cluster-like inclusions formed by collision and aggregation. Deoxidation of molten steel with Fe-30% Al alloy is more effective than that with pure Al, which depends on different local supersaturation in the initial deoxidation process.

关键词

脱氧初期 / 局部过饱和度 / 夹杂物 / 形核和长大 / 洁净度

Key words

initial deoxidation / local supersaturation / inclusions / nucleation and growth / cleanliness

图表

引用本文

导出引用
赵一将, 李光强, 孟泽, . 不同铝含量的脱氧剂对钢液洁净度的影响[J]. 钢铁, 2023, 58(1): 47-54 https://doi.org/10.13228/j.boyuan.issn0449-749x.20220436
ZHAO Yi-jiang, LI Guang-qiang, MENG Ze, et al. Effect of deoxidizer with different Al content on cleanliness of molten steel[J]. Iron and Steel, 2023, 58(1): 47-54 https://doi.org/10.13228/j.boyuan.issn0449-749x.20220436

参考文献

[1] GU C, LIU W, LIAN J, et al. In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(5): 826.
[2] WANG R, BAO Y, YAN Z, et al. Comparison between the surface defects caused by Al2O3 and TiN inclusions in interstitial-free steel auto sheets[J]. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(2): 178.
[3] GU C, BAO Y, GAN P, et al. Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime[J]. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(6): 623.
[4] 薛正良, 齐江华, 金焱, 等. 超低氧条件下钢液脱氧与氧化物夹杂尺寸[J]. 武汉科技大学学报, 2006, 29(6): 3.(XUE Zheng-liang, QI Jiang-hua, JIN Yan, et al. Deoxidization of ectra-low oxygen steel and size of oxide inclusions[J]. Journal of Wuhan University of Science and Technology, 2006, 29(6): 3.)
[5] Beskow K, Sichen D. Experimental study of the nucleation of alumina inclusions in liquid steel[J]. Scandinavian Journal of Metallurgy, 2003, 32(6): 320.
[6] Van Ende M A, Guo M, Proost J, et al. Interfacial reactions between oxygen containing fe and al at the onset of liquid Fe deoxidation by Al addition[J]. ISIJ International, 2010, 50(11): 1552.
[7] Van Ende M A, Guo M, Proost J, et al. Formation and morphology of Al2O3 inclusions at the onset of liquid Fe deoxidation by Al addition[J]. ISIJ International, 2011, 51(1): 27.
[8] 沈颐身. 冶金传输原理基础[M]. 北京:冶金工业出版社, 2000.(SHEN Yi-shen. Basic Principles of Metallurgical Transmission[M]. Beijing:Metallurgical Industry Press,2000.)
[9] 夏清, 陈常贵. 化工原理(上)[M]. 天津:天津大学出版社, 2005.(XIA Qing, CHEN Chang-gui. Principles of Chemical Engineering(Ⅰ)[M].Tianjin:Tianjin University Press,2005.)
[10] 唐德池, 刘国梁, 马文俊,等. 控流装置对中间包钢水流场和洁净度的影响[J].连铸,2021(5):5.(TANG De-chi, LIU Guo-liang, MA Wen-jun, et al. Effect of flow control devices on fluid flow and steel cleanliness in tundish[J]. Continuous Casting, 2021(5):5.)
[11] 李永超, 卢彩玲, 左健成,等. 轴承钢中间包首炉大型夹杂物分析及控制[J]. 连铸, 2021(3):6.(LI Yong-chao,LU Cai-ling,ZUO Jian-cheng, et al. Analysis and control of macro-inclusion of bearing steel in tundish first heat[J]. Continuous Casting, 2021(3):6.)
[12] 曾耀先.含硫齿轮钢20CrMnTiH洁净度控制[J].钢铁,2021,56(2):76.(ZENG Yao-xian. Cleanness control of sulfur bearing gear steel 20CrMnTiH[J]. Iron and Steel, 2021,56(2):76.)
[13] 黄希祜. 钢铁冶金原理[M].4版. 北京:冶金工业出版社, 2013.(HUANG Xi-hu. Principles of Iron and Steel Metallurgy Page[M]. 4ed. Beijing:Metallurgical Industry Press,2013.)
[14] 赵凤林, 李仁超, 许诚信, 等.氧化铝夹杂的形态[J].钢铁,1990,25(2):18.(ZHAO Feng-lin, LI Ren-chao, XU Cheng-xin, et al. Morphology of alumina inclusions[J]. Iron and Steel,1990,25(2):18.)
[15] 王康,刘剑辉,杨树峰,等.GCr15轴承钢EAF-LF-VD-CC流程非金属夹杂物的演变[J].钢铁,2020,55(2):48.(WANG Kang, LIU Jian-hui, YANG Shu-feng, et al. Evolution of non-metallic inclusions in EAF-LF-VD-CC process of GCr15 bearing steel[J]. Iron and Steel,2020,55(2):48.)
[16] 邓志银, 戈文英, 胡博文,等.合金化对铝镇静钢中夹杂物的影响[J].钢铁,2019,54(10):30.(DENG Zhi-yin, GE Wen-ying, HU Bo-wen,et al. Effect of alloying on inclusions in Al-killed steel by a ferrochromium alloy[J]. Iron and Steel,2019,54(10):30.)
[17] 张立峰, 杨文, 张学伟, 等.钢中夹杂物的系统分析技术[J]. 钢铁, 2014, 49(2):9.(ZHANG Li-feng, YANG Wen, ZHANG Xue-wei, et al. Systematic analysis of non-metallic inclusions in steel[J]. Iron and Steel, 2014, 49(2):9.)
[18] 张立峰, 李树森, 王建伟, 等.酸蚀法观察钢中夹杂物的三维形貌[J].钢铁,2009,44(3):75.(ZHANG Li-feng, LI Shu-sen, WANG Jian-wei, et al. Observation of the 3-dimensional morphology of inclusions using partial acid extraction[J]. Iron and Steel, 2009,44(3):75.)
[19] 张学伟, 张立峰, 杨文, 等.非金属夹杂物三维形貌及其包裹的非夹杂物颗粒物来源分析[J].冶金分析,2016,36(11):1.(ZHANG Xue-wei, ZHANG Li-feng, YANG Wen, et al. Three-dimensional morphology of non-metallic inclusions and the source analysis of wrapped non-inclusion particles[J]. Metallurgical Analysis, 2016,36(11):1.)
[20] 王林珠,李翔,刘录凯, 等.镍基高温合金中非金属夹杂物成分和特征控制[J].中国冶金,2021,31(5):32.(WANG Lin-zhu, LI Xiang, LIU Lu-kai, et al. Control on composition and characteristics of non-metallic inclusions in nickel-base superalloy[J]. China Metallurgy, 2021,31(5):32.)
[21] 张立峰,李燕龙,任英.钢中非金属夹杂物的相关基础研究(Ⅱ)——夹杂物检测方法及脱氧热力学基础[J].钢铁,2013,48(12):1.(ZHANG Li-feng, LI Yan-long, REN Ying. Fundamentals of non-metallic inclusions in steel:Part Ⅱ.Evaluation method of inclusions and thermodynamics of steel deoxidation[J]. Iron and Steel, 2013,48(12):1.)
[22] Suito H, Ohta H. Characteristics of particle size distribution in early stage of deoxidation[J]. ISIJ International, 2006, 46(1):33.
[23] Yoichi O. Diffusion in liquid iron and its alloys[J]. Tetsu-to-Hagane, 2010, 63(8):1350.
[24] Kawai Y, Shiraishi Y. Handbook of Physico-chemical Properties at High Temperatures[M]. Japan: Iron and Steel Institute of Japan, 1988.
[25] Goto H, Miyazawa K, Tanaka K. Effect of oxygen content on size distribution of oxides in steel[J]. ISIJ International, 1995, 35(3): 286.
[26] 李海波,李宏,王新华,等.20CrMoH钢精炼过程中T[O]和夹杂物的研究[J].钢铁,2007,42(10):43.(LI Hai-bo, LI Hong, WANG Xin-hua, et al. Study of total oxygen content and non-metallic inclusions in 20CrMoH steel during refining process[J]. Iron and Steel,2007,42(10):43.)
[27] WANG M, BAO Y, CUI H, et al. The composition and morphology evolution of oxide inclusions in Ti-bearing ultra low-carbon steel melt refined in the RH process[J]. ISIJ International, 2010, 50(11): 1606-1611.
[28] 王敏,包燕平,赵立华,等.钢液中夹杂物粒径与全氧的关系[J].工程科学学报,2015,37(增刊1):1.(WANG Min, BAO Yan-ping, ZHAO Li-hua, et al. Relationship between the size of inclusions in steel and total oxygen(T.O)[J]. Chinese Journal of Engineering, 2015,37(s1):1.)

基金

国家自然科学基金资助项目(52004189); 湖北省科技厅资助项目(2022BAA021)

PDF(3526 KB)

Accesses

Citation

Detail

段落导航
相关文章

/