转底炉用含碳球团制备及生产工艺优化

杨涛, 雷杰, 任晓健, 万奇林, 周荣宝, 龙红明

钢铁 ›› 2023, Vol. 58 ›› Issue (4) : 157-166.

PDF(4914 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月26日 星期六
PDF(4914 KB)
钢铁 ›› 2023, Vol. 58 ›› Issue (4) : 157-166. DOI: 10.13228/j.boyuan.issn0449-749x.20220646
环保与能源

转底炉用含碳球团制备及生产工艺优化

  • 杨涛1,2, 雷杰1, 任晓健3, 万奇林3, 周荣宝3, 龙红明1,2
作者信息 +

Preparation and production process optimization of carbon-bearing pellets for rotary bottom furnace

  • 杨涛1,2, 雷杰1, 任晓健3, 万奇林3, 周荣宝3, 龙红明1,2
Author information +
文章历史 +

摘要

转底炉直接还原工艺是目前处理含铁锌尘泥工艺的典型代表,能充分利用钢铁尘泥中的铁、碳和锌等物质,生产的金属化球团可返回炼铁/炼钢生产工序,同时可回收氧化锌粉等高附加值资源,成为钢铁企业含铁尘泥处理技术发展的趋势之一。基于某钢铁企业转底炉生产情况,从含碳球团的成型工艺参数及还原焙烧制度等方面进行分析与优化,以期为转底炉处理含铁尘泥工艺的推广和改进提供参考。揭示了压球工艺参数如水分、辊速和压力等对含碳球团的成球性及强度的影响规律,结果表明,3个参数相互作用、紧密相关,建议混合料压球水分、辊轮转速和辊轮压力分别控制为14%、6.0 r/min和2.5×104 N/cm,此时原料的成球性能和球团强度等综合性能最佳;探究了焙烧温度、焙烧时间及摆放位置对金属化球团强度性能、金属化率及脱锌率的影响,结果表明,适当提高焙烧温度和延长焙烧时间使得金属铁连晶增加、渣相填充铁连晶间的孔隙,且金属铁相、浮氏体及渣相连结增强,可提高金属化球团的强度。其中焙烧温度对改善球团微观结构并提高球团抗压强度的作用最为显著,建议焙烧温度设定为1 275 ℃、焙烧时间设定为25 min;摆放方式对还原后球团的平均抗压强度、金属化率和脱锌率等性能的影响较小,但3层摆放较2层摆放而言,会造成各层球团之间性能的差异逐渐增大。

Abstract

The rotary hearth furnace direct reduction is recognized as a typical process for the treatment of iron- and zinc-containing dust sludge,due to the full utilization of iron,carbon and zinc. The metallized pellets produced by the rotary hearth furnace are available for iron and steel production and high value added resources such as zinc oxide powder are recovered. The preparation process parameters and reduction roasting system of carbon-bearing pellets were analyzed and optimized based on the actual production conditions,contributing to the promotion and improvement of the process of treating iron-bearing dust sludge in the rotary hearth furnace. The effects of pelletizing process parameters such as moisture,roll speed and pressure on the sphericity and strength of carbon-bearing pellets were revealed. The optimal results were derived at 14% mix balling moisture,6.0 r/min roller speed and 2.5×104 N/cm roller pressure. The effects of roasting temperature,roasting time and placement on the strength properties,metallization rate and dezincification rate of metallized pellets were investigated. Raising the roasting temperature and prolonging the roasting time appropriately resulted in an increase of metallic iron crystallization and a decrease of porosity. In addition,the metallic iron phase,faujasite and slag linkage were enhanced,leading to an improvement in the strength of the metallized pellets. The roasting temperature significantly affected the pellet microstructure and compressive strength. The optimal roasting temperature was 1 275 ℃ and roasting time was 25 min. The effect of placement on the properties of metallized pellets such as average compressive strength,metallization rate and dezincification rate was slight. However,the three-layer placement caused an increased difference in properties among the pellets compared to the two-layer placement.

关键词

冶金固废 / 含铁尘泥 / 转底炉 / 资源化 / 工艺优化

Key words

metallurgical solid waste / iron-bearing dust / rotary hearth furnace / resource recovery / process optimization

图表

引用本文

导出引用
杨涛, 雷杰, 任晓健, . 转底炉用含碳球团制备及生产工艺优化[J]. 钢铁, 2023, 58(4): 157-166 https://doi.org/10.13228/j.boyuan.issn0449-749x.20220646
YANG Tao, LEI Jie, REN Xiao-jian, et al. Preparation and production process optimization of carbon-bearing pellets for rotary bottom furnace[J]. Iron and Steel, 2023, 58(4): 157-166 https://doi.org/10.13228/j.boyuan.issn0449-749x.20220646

参考文献

[1] 王静松,李岩,冯怀萱,等. 钢铁产业集聚区难处理尘泥处理与全量资源化利用进展[J]. 工程科学学报,2021,43(12):1737.(WANG Jing-song,LI Yan,FENG Huai-xuan,et al. Progress in treating difficult-to-handle dust and sludge and full-scale resource utilization in an iron and steel industry cluster[J]. Chinese Journal of Engineering,2021,43(12):1737.)
[2] 尚海霞,李海铭,魏汝飞,等. 钢铁尘泥的利用技术现状及展望[J]. 钢铁,2019,54(3):9.(SHANG Hai-xia,LI Hai-ming,WEI Ru-fei,et al. Present situation and prospect of iron and steel dust and sludge utilization technology[J]. Iron and Steel,2019,54(3):9.)
[3] 金永龙,刘思远,秦国旗,等. 典型的处置钢铁企业含锌固废工艺的能效分析[J]. 冶金能源,2022,41(3):18.(JIN Yong-long,LIU Si-yuan,QIN Guo-qi,et al. Energy efficiency analysis of typical technologies for disposal ferrous solid waste combined with Zn in steel plants[J]. Energy for Metallurgical Industry,2022,41(3):18.)
[4] 佟帅,李晨晓,王书桓,等. 钢渣处理工艺及综合利用分析[J]. 冶金能源,2020,39(6):3.(TONG Shuai,LI Chen-xiao,WANG Shu-huan,et al. Steel slag treatment process and comprehensive utilization analysis[J]. Energy for Metallurgical Industry,2020,39(6):3.)
[5] 刘自民,饶磊,桂满城,等. 马钢含铁尘泥综合利用研究与实践[J]. 中国冶金,2018,28(9):71.(LIU Zi-min,RAO Lei,GUI Man-cheng,et al. Research and practice of comprehensive utilization of Fe-containing dust in Masteel[J]. China Metallurgy,2018,28(9):71.)
[6] LI Xiang,TANG Ping,JIANG Jing,et al. Control of zinc-containing dust agglomerates in basic oxygen furnace flue gas cleaning system[J]. ISIJ International,2021,61(3):763.
[7] 吴胜利,张风杰,张建良,等. 钢厂含锌粉尘基本物性及其成球性能研究[J]. 环境工程,2015,33(7):90.(WU Sheng-li,ZHANG Feng-jie,ZHANG Jian-liang,et al. Basic characteristics and balling performance of zinc-bearing dust in steel plant[J]. Environmental Engineering,2015,33(7):90.)
[8] 毛瑞,张建良,刘征建,等. 钢铁流程含铁尘泥特性及其资源化[J]. 中南大学学报(自然科学版),2015,46(3):774.(MAO Rui,ZHANG Jian-liang,LIU Zheng-jian,et al. Characteristic and resource utilization technique of dust and sludge containing iron from steel production process[J]. Journal of Central South University(Natural Science),2015,46(3):774.)
[9] 巨建涛,党要均. 钢铁厂含锌粉尘处理工艺的现状及发展[J]. 材料导报,2014,28(9):109.(JU Jian-tao,DANG Yao-jun. Present state and development of zinc-bearing dust treatment process in iron and steel plants[J]. Materials Reports,2014,28(9):109.)
[10] 田玮,彭犇,王晟,等. 含锌电炉粉尘处理技术的研究进展[J]. 环境工程,2019,37(2):144.(TIAN Wei,PENG Ben,WANG Sheng,et al. Research progress of treatment technologies for zn-containing electric arc furnaces dust[J]. Environmental Engineering,2019,37(2):144.)
[11] QIAN Li-xin,YANG Tao,LONG Hong-ming,et al. Recycling of waste V2O5-WO3/TiO2 catalysts in the iron ore sintering process via a preballing approach[J]. ACS Sustainable Chemistry and Engineering,2021,9(48):16373.
[12] 杨涛,刘爽,钱立新,等. 废塑料在钢铁生产流程中资源化利用研究进展[J]. 钢铁研究学报,2022,4(10):1047.(YANG Tao,LIU Shuang,QIAN Li-xin,et al. Recycling waste plastics in iron and steel production process: A review[J].Journal of Iron and Steel Research,2022,4(10):1047.)
[13] PEI Yuan-dong,WU Sheng-li,CHEN Shao-guo,et al. Sintering of solid waste generated in iron and steel manufacturing process in Shougang Jingtang[J]. Journal of Iron and Steel Research International,2017,24(7):697.
[14] 魏恒,范越文,胡晓军. 钢铁冶金尘泥返烧结利用的理论分析与试验研究[J]. 江西冶金,2021,41(1):6.(WEI Heng, FAN Yue-wen,HU Xiao-jun. A theoretical analysis and experimental study on the re-sintering utilization of metallurgical dust[J]. Jiangxi Metallurgy,2021,41(1):6.)
[15] 刘超,张玉柱,王峰,等. 多源冶金粉尘资源化研究现状及展望[J]. 中国冶金,2022,32(10):38.(LIU Chao,ZHANG Yu-zhu,WANG Feng,et al. Research status and prospect of multi-source metallurgical dust recycling[J]. China Metallurgy,2022,32(10):38.)
[16] WANG Ding-zheng,ZHU De-qing,JIAN Pan,et al. An investigation into the alkali metals removal from zn-bearing dust pellets in direct reduction[J]. JOM,2022,74(2):634.
[17] ZHU De-qing,WANG Ding-zheng,PAN Jian,et al. A study on the zinc removal kinetics and mechanism of zinc-bearing dust pellets in direct reduction[J]. Powder Technology,2021,380(5): 273.
[18] GUO Yu-hua,QIE Jun-mao,ZHANG Chun-xia,et al. Material flow analysis of zinc during the manufacturing process in integrated steel mills in China[J]. Journal of Industrial Ecology,2021,25(4):1009.
[19] 刘纲,干勇,李士琦,等. 高炉含锌粉尘还原性影响因素分析[J]. 中国冶金,2019,29(10):20.(LIU Gang,GAN Yong,LI Shi-qi,et al. Analysis of reducing factors of zinc-bearing blast furnace dust[J]. China Metallurgy,2019,29(10):20.)
[20] LI Yan,FENG Huai-xuan,WANG Jing-song,et al. Current status of the technology for utilizing difficult-to-treat dust and sludge produced from the steel industry[J]. Journal of Cleaner Production,2022,367(9):132909.
[21] 徐健祥,齐凤升,李宝宽,等. 厚料层转底炉含铁尘泥直接还原模拟[J]. 中国冶金,2021,31(10):94.(XU Jian-xiang,QI Feng-sheng,LI Bao-kuan,et al. Direct reduction simulation of iron-bearing dust in thick-layer rotary hearth furnace[J]. China Metallurgy,2021,31(10):94.)
[22] 李博,毛艳丽,王博蔚,等. 转底炉技术及其在含铁尘泥处理中的应用[J]. 鞍钢技术,2017(6):8.(LI Bo,MAO Yan-li,WANG Bo-wei,et al. Treatment process by rotary hearth furnace and its application in treatment of iron-bearing sludge[J]. Angang Technology,2017(6):8.)
[23] MAO Rui,WANG Fei,XU Yuan,et al. Preparation process of cold bonded pellets with iron-bearing dust and sludge from steel production process[J]. Metallurgical Research and Technology,2021,118(6):1.
[24] SHE Xue-feng,WANG Jing-song,WANG Guang,et al. Removal mechanism of Zn,Pb and alkalis from metallurgical dusts in direct reduction process[J]. Journal of Iron and Steel Research International,2014,21(5):488.
[25] YANG Xue,HAO Xian-sheng,LIU Xiao-ming,et al. Recovery of zinc and iron from steel mill dust—An overview of available technologies[J]. Materials,2022,15(12):4127.
[26] 武宇亮,姜泽毅,张欣欣,等. 转底炉还原炼钢含锌粉尘球团的数值模拟[J]. 过程工程学报,2012,12(5):803.(WU Yu-liang,JIANG Ze-yi,ZHANG Xin-xin,et al. Numerical simulation on reduction of zinc-containing steel-making dust pellets in a rotary hearth furnace[J]. The Chinese Journal of Process Engineering,2012,12(5):803.)
[27] 张建良,李洋,袁骧,等. 中国钢铁企业尘泥处理现状及展望[J]. 钢铁,2018,53(6):1.(ZHANG Jian-liang,LI Yang,YUAN Xiang,et al. Present situation and prospect of dust treatment in Chinese iron and steel enterprises[J]. Iron and Steel,2018,53(6):1.)
[28] LIE Pei-jun,LIU Zheng-gen,CHU Man-sheng,et al. Green and efficient utilization of stainless steel dust by direct reduction and self-pulverization[J]. Journal of Hazardous Materials,2021,413(7):125403.
[29] 彭程,范建峰. 宝钢转底炉工艺技术发展[J]. 钢铁,2019,54(2):97.(PENG Cheng,FAN Jian-feng. Rotary hearth furnace process development in Baosteel[J]. Iron and Steel,2019,54(2):97.)
[30] 毛瑞,王飞,金海,等. 转底炉工艺处理含铁尘泥关键技术[J]. 钢铁,2020,55(8):199.(MAO Rui,WANG Fei,JING Hai,et al. Key technology of treating iron-bearing dust and sludge by rotary hearth furnace process[J]. Iron and Steel,2020,55(8):199.)

基金

安徽省自然科学基金杰青项目资助项目(2208085J19)

PDF(4914 KB)

23

Accesses

0

Citation

Detail

段落导航
相关文章

/