高炉富氢对钒钛矿软熔滴落性能的影响

郄亚娜, 靳亚涛, 康媛, 李丽芬, 王艺帆, 王新东

钢铁 ›› 2023, Vol. 58 ›› Issue (5) : 31-38.

PDF(3239 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月26日 星期六
PDF(3239 KB)
钢铁 ›› 2023, Vol. 58 ›› Issue (5) : 31-38. DOI: 10.13228/j.boyuan.issn0449-749x.20220696
原料与炼铁

高炉富氢对钒钛矿软熔滴落性能的影响

  • 郄亚娜1, 靳亚涛2, 康媛2, 李丽芬2, 王艺帆1, 王新东3
作者信息 +

Influence of hydrogen-rich on softening and melting property of blast furnace burden with vanadium and titanium

  • 郄亚娜1, 靳亚涛2, 康媛2, 李丽芬2, 王艺帆1, 王新东3
Author information +
文章历史 +

摘要

高炉富氢冶金是降低高炉能耗与碳排放重要途径,研究了富氢还原对钒钛矿软熔滴落过程的影响,并采用历程中断法分析表征了钒钛矿渣铁形成过程中的还原度与初渣渣量的变化。研究结果表明,钒钛矿的软熔收缩行为与其还原过程密切相关,富氢还原失氧率加快使钒钛矿500~900 ℃的还原膨胀有所加剧,温度小于1 100 ℃时,FeO的大量生成使钒钛矿中低温收缩变形率增加,温度为1 100 ℃时,H2的还原速率是CO还原速率的8倍,逐渐增厚的铁壳及初渣熔点的升高导致钒钛矿的熔融滴落温度升高。富氢率为10%时,高炉初渣渣量由接近900 kg/t降低到460 kg/t左右,初渣渣量减少将近1/2,接近终渣渣量,这将使煤气阻力损失明显降低,大大改善高炉软熔滴落带的透气性。同时富氢还原减少了高温条件下钒钛矿中FeO与钛铁矿FeTiO3、钛铁晶石Fe2TiO4等含钛矿物的相互结合与耦合反应,促进了软熔带渣铁的分离,有效减少了炉腹泛液现象。冶炼钒钛矿高炉富氢后软熔带位置下移、厚度减薄,尤其是透气性最差的熔融区间变窄、透气性增加,这表明冶炼钒钛矿高炉富氢还原不仅可以降低高炉碳消耗与CO2排放,而且改善了高炉软熔带的分布状态,促进了高炉的顺行高产。

Abstract

Hydrogen-rich metallurgy in blast furnace(BF) is an important way to reduce energy consumption and carbon emission.The influence of hydrogen-rich reduction on the process of softening and melt dripping of vanadium titanium ore was studied, and the change of reduction degree and amount of primary of vanadium-titaniumd burden during the process was analyzed by the process interruption method. The results showed that,the softening and shrinkage behavior of vanadium titanium ore is closely related to its reduction process. With the acceleration of hydrogen-rich reduction rate, the reduction expansion of vanadium-titanite at 500-900 ℃ is intensified. With the increase of FeO, the shrinkage deformation rate of vanadium-titanium ore increases below 1 100 ℃. The reduction rate of H2 is 8 times of that of CO at 1 100 ℃. The gradually thickening iron shell and the increase of the melting point of the primary slag lead to the increase of the melting and droping temperature. When the hydrogen enrichment rate is 10%, the amount of primary smelting slag with vanadium titanium ore is reduced by half, from nearly 900 kg/t to about 460 kg/t, it is close to the final slag amount, which will reduce the gas resistance loss and greatly improve the permeability of cohensive zone of BF. Hydrogen-rich reduction reduces the interaction and coupling reaction between FeO and ilmenite FeTiO3 and ilmenite SPAR Fe2TiO4 at high temperature, which promotes the separation of melting slag and metal iron in cohensive zone, and effectively reduces the flooding phenomenon of melt in the bosh.The hydrogen-rich operation of BF with vanadium titanium ore will make the cohensive zone move down and the thickness thin, especially the melting zone with the worst permeability become narrowed. This indicates that hydrogen-rich reduction of BF with vanadium titanite ore not only reduces the carbon consumption and CO2emission, but also improves the state of cohensive zone and promotes the anterograde high yield of BF.

关键词

富氢还原 / 软熔收缩 / 高炉初渣 / 软熔带 / 钒钛矿冶炼

Key words

hydrogen-rich reduction / sofening and shrinkage / BF primary slag / cohensive zone / vanadium titanium ore

图表

引用本文

导出引用
郄亚娜, 靳亚涛, 康媛, . 高炉富氢对钒钛矿软熔滴落性能的影响[J]. 钢铁, 2023, 58(5): 31-38 https://doi.org/10.13228/j.boyuan.issn0449-749x.20220696
QIE Ya-na, JIN Ya-tao, KANG Yuan, et al. Influence of hydrogen-rich on softening and melting property of blast furnace burden with vanadium and titanium[J]. Iron and Steel, 2023, 58(5): 31-38 https://doi.org/10.13228/j.boyuan.issn0449-749x.20220696

参考文献

[1] 世界金属导报. 关于新形势下炼铁工业发展的认识[J/OL]. http://www.worldmetals.com.cn/viscms/search.jspx?q=%E6%97%A5%E6%9C%ACCOURSE50&siteId=3, 2020-11-17.(World Metals Herald. Understanding of the development of ironmaking industry under the new situation[J/OL].http://www.worldmetals.com.cn/viscms/search.jspx?q=%E6%97%A5%E6%9C%ACCOURSE50&siteId=3,2020-11-17.)
[2] 单成. 含钛高炉渣内生泡沫化规律研究[D]. 重庆:重庆大学, 2017.(SHAN Cheng. The Slag Foaming Originated Form Reactions of Titanium-Bearing Blast Furnace Slag[D].Chongqing:Chongqing University, 2017.)
[3] 陈立杰. 高炉冶炼钒钛磁铁矿综合炉料熔滴性能优化研究[D].沈阳:东北大学, 2014.(CHEN Li-jie. Optimization on Softening-Dripping Behaviors of Blast Furnace Comprehensive Burdens for Vanadium-Titanium Magnetite Smelting[D]. Shenyang:Northeastern University,2014.)
[4] 邓朝枢. 钒钛烧结矿在高炉内的还原相变[J]. 钢铁, 1985,20(12):46.(DENG Chao-shu. Phase transformation of V-Ti-Bearing Sinter During Reduction in BF[J]. Iron and Steel,1985,20(12):46.)
[5] 李永全,Fruehan R. 高炉炉缸内碳氮化钛的生成机理研究[J]. 钢铁,2003,38(2):58.(LI Yong-quan. Study on Formation of Titanium Carbonitride in Blast Furnace Hearth[J]. Iron and Steel,2003,38(2):58.)
[6] 张旭. 钒钛磁铁矿高炉冶炼过程中泡沫化现象研究[D].重庆:重庆大学, 2016.(ZHANG Xu. Research on the Foaming Phenomenon in Blast Furnace Process Treating Vanadium Titanium Magnetite[D]. Chongqing:Chongqing University,2016.)
[7] 戚大光,李道昭,张桂欣,等.钒钛磁铁矿高炉冶炼的热力学讨论[J].钢铁钒钛,1984,5(2):79.(QI Da-guang, LI Dao-zhao, ZHANG Gui-xin, et al. Discussion on thermodynamics of blast furnace smelting of vanadium titanomagnetite[J]. Iron Steel Vanadium Titanium, 1984,5(2):79.)
[8] 周凯. 钒钛炉料软熔性能及物相变化规律研究[D]. 重庆:重庆大学, 2020.(ZHOU Kai. Study on Softening-Melting Property and Phase Transformation of Vanadium Titanium Burden[D].Chongqing: Chongqing University,2020.)
[9] 宋家齐. 变压条件下钒钛烧结矿的高温还原软熔行为研究[D].重庆:重庆大学, 2021.(SONG Jia-qi. Study on the Softening and Melting Behavior of Vanadium-Titanium Sinter Under Variable Load[D]. Chongqing:Chongqing University,2021.)
[10] 唐珏. 高铬型钒钛磁铁矿气基竖炉直接还原-熔分新工艺基础研究[D]. 沈阳:东北大学, 2017.(TANG Jue. Fundamental Study on Innovative Process of Gas-Based Shaft Furnace Direct Reduction-Melting Separtion for High Chromium Vanadium-Bearing Titanomagnetite[D]. Shenyang:Northeastern University,2017.)
[11] 刘建兴. 软熔滴落带高铬型钒钛磁铁矿有价组元迁移机理[D]. 沈阳:东北大学, 2013.(LIU Jian-xing. The Migration Mechanism of Valuable Components for High Chromia Vanadium-Titanium Magnetite in Cohesive Zone[D]. Shenyang:Northeastern University,2013.)
[12] 徐采栋, 林蓉. 攀枝花钒钛磁铁矿高温还原中的重要物理化学问题[J]. 钢铁钒钛, 1980(s1): 1. (XU Cai-dong, LIN Rong. Important physical and chemical problems in high temperature reduction of Panzhihua vanadium titanomagnetite[J]. Iron Steel Vanadium Titanium, 1980(s1): 1.)
[13] 邓青宇. 钒钛磁铁矿高炉冶炼过程中碳氮化钛形成条件与调控机制研究[D].重庆:重庆大学,2012.(DENG Qing-yu. Research on the Formation of TiCN and Regulation Mechanism in Blast Furnace Process Treating Vanadic Titanomagnetite[D]. Chongqing:Chongqing University,2012.)
[14] QIE Ya-na, LÜ Qing, LAN Chen-chen, et al. Energy conservation and CO2 abatement potential of a gas-injection blast furnace[J]. High Temperature Materials and Processes, 2020,39:96.
[15] Matsumura M, Hoshi M, Kawaguchi T. Improvement of sinter softening property and reducibility by controlling chemical compositions[J]. ISIJ International,2005, 45(4):594.
[16] Sunahara K, Natsui T, Shizawa K, et al. Effect of coke reactivity on sinter softening-melting property by simultaneous evaluation method of carbonaceous and ferrous burdens in blast furnace[J]. ISIJ International, 2011, 51(8):1322.
[17] Higuchi K, Naito M, Nakano M, et al. Optimization of chemical composition and microstructure of iron ore sinter for low-temperature drip of molten iron with high permeability[J]. ISIJ International, 2004, 44(12):2057.
[18] QIE Ya-na, LYU Qing, LI Jian-peng, et al. Effect of hydrogen addition on reduction kinetics of iron oxides in gas-injection BF[J]. ISIJ International, 2017, 57(3):404.
[19] LÜ Qing, QIE Ya-na, LIU Xiao-jie, et al. Effect of hydrogen addtioon on reduction behavior of iron oxides in gas-injection blast furnace[J]. Thermochimica Acta, 2017,648:79.
[20] 梁之凯. 铁矿球团气基还原及其膨胀行为研究[D]. 长沙:中南大学, 2013.(LIANG Zhi-kai. Study on Gas-Based Reduction and Accompanying Swelling Behavior of Iron Ore Pellets[D]. Changsha:Central South University,2013.)
[21] 郭汉杰. 冶金物理化学[M]. 北京:冶金工业出版社, 2013.(GUO Han-jie. Metallurgical Physical Chemistry[M]. Beijing: Metallurgical Industry Press,2013.)
[22] 黄希祜. 钢铁冶金原理[M]. 北京:冶金工业出版社, 1990.(HUANG Xi-hu. Principle of Iron and Steel Metallurgy[M]. Beijing: Metallurgical Industry Press,1990.)
[23] QIE Ya-na, LÜ Qing, LIU Xiao-jie, et al. Effect of hydrogen addition on softening and melting reduction behavior of ferrous burden in gas-injection blast furnace[J]. Metallurgical and Materials Transactions B, 2018, 49:2622.
[24] 孙昊延, 朱庆山, 李洪钟. 钒钛磁铁矿流态化直接还原技术现状与发展趋势[J]. 过程工程学报, 2018,18(6):1147.(SUN Hao-yan, ZHU Qing-shan, LI Hong-zhong. The technical state and development trend of the direct reduction of titanomagnetite by fluidized bed[J]. The Chinese Journal of Process Engineering,2018,18(6):1147.)
[25] 宋国才, 苑天宇, 陈小武. 高炉冶炼钒钛烧结矿软熔滴落带物相组成研究[J]. 钢铁钒钛, 1996, 17(2):25.(SONG Guo-cai, YUAN Tian-yu, CHEN Xiao-wu. Study on phase composition of the cohesive dropping zone in bf during smelting v-bearing titaniferous magnetite sinter[J].Iron Steel Vanadium Titanium, 1996,17(2):25.)
[26] 包毅成,贾学庆,宋国才.钒钛烧结矿高炉冶炼软熔滴落带还原过程模拟研究[J].钢铁钒钛,1993,14(2):1.(BAO Yi-cheng, JIA Xue-qing, SONG Guo-cai. Simulation study on reduction process of soft melt drop zone in blast furnace smelting of vanadium titanium sinter[J]. Iron Steel Vanadium Titanium, 1993,14(2):1.)
[27] 郄亚娜. 喷煤气高炉冶炼特点及反应规律的研究[D]. 唐山:华北理工大学, 2018.(QIE Ya-na. Smelting Characteristic and Reaction Rules in Gas-injection Blast Furnace[D]. Tangshan:North China University of Science and Technology,2018.)
[28] 兰臣臣. 焦炭在富氢高炉内的多相反应机理[D]. 沈阳:东北大学, 2020.(LAN Chen-chen. Multiphase Reaction Mechanism of Coke in Hydrogen Rich Blast Furnace[D].Shenyang: Northeastern University,2020.)
[29] 杜鹤桂.高炉冶炼钒钛磁铁矿原理[M].北京:科学出版社, 1996.(DU He-gui. Principle of Blast Furnace Smelting Vanadium Titanomagnetite[M]. Beijing: Science Press,1996.)
[30] Bakker T. Softening in the Blast Furnace Process[D].Netherlands:Delft University of Technology,1999.)
[31] QIE Ya-na, LÜ Qing, LAN Chen-chen, et al. Effect of H2 addition on process of primary slag formation in cohesive zone[J]. Journal of Iron and Steel Research International,2020,27:132.

基金

国家自然科学基金资助项目(52104328); 河北省重点研发计划资助项目(22374003D); 河北省自然科学基金资助项目(E2021209023)

PDF(3239 KB)

46

Accesses

0

Citation

Detail

段落导航
相关文章

/