GCr15轴承钢连铸过程MgO·Al2O3夹杂物形成机理

张建斌, 徐建飞, 王昆鹏, 王郢, 杨谱, 陈廷军

钢铁 ›› 2023, Vol. 58 ›› Issue (5) : 83-91.

PDF(3000 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月29日 星期二
PDF(3000 KB)
钢铁 ›› 2023, Vol. 58 ›› Issue (5) : 83-91. DOI: 10.13228/j.boyuan.issn0449-749x.20220703
炼钢

GCr15轴承钢连铸过程MgO·Al2O3夹杂物形成机理

  • 张建斌, 徐建飞, 王昆鹏, 王郢, 杨谱, 陈廷军
作者信息 +

Formation mechanism of MgO·Al2O3 inclusions in GCr15 steel in continuous casting

  • 张建斌, 徐建飞, 王昆鹏, 王郢, 杨谱, 陈廷军
Author information +
文章历史 +

摘要

为了研究GCr15轴承钢浇铸过程MgO·Al2O3夹杂物形成原因,以改善钢的可浇性,对LF结束、RH结束、中间包冲击区、中间包浇铸区进行夹杂物全流程分析。LF结束夹杂物主要为镁铝尖晶石,并含有少量钙铝酸盐夹杂物。RH真空处理后镁铝尖晶石夹杂物被高效化去除,钢液中仅剩少量低熔点和高熔点钙铝酸盐夹杂物,中间包浇铸时可以在钢液中检测到许多MgO·Al2O3夹杂物。采用不含氧化镁的中间包覆盖剂和铝质中间包内衬,在不改变连铸其他工艺参数条件下,中间包MgO·Al2O3夹杂物数量并没有得到显著降低,中间包钢液中仍然可以检测到许多MgO·Al2O3夹杂物,这说明中间包钢-渣-耐火材料间的反应并不是MgO·Al2O3夹杂物的生成原因。向铁质提桶取样器中加入成分以SiO2、Cr2O3、Fe2O3为主的铬质引流砂,并利用该铁质提桶取样器对RH破空后钢水进行取样,尽管钢水总氧质量分数增加0.000 1%,但可以在所取的钢样中检测到许多MgO·Al2O3夹杂物,说明钢液的轻微氧化对MgO·Al2O3夹杂物形成具有重要的影响。通过分析中间包覆盖剂成分,发现浇铸过程覆盖剂碱度偏低,Cr2O3和FeO含量偏高,且同一炉钢水浇铸后期覆盖剂中Cr2O3、FeO含量较浇铸前期有所降低,说明浇铸过程覆盖剂会向钢水传氧,由此造成对钢液的氧化,因此,覆盖剂成分的稳定控制对于轴承钢MgO·Al2O3夹杂物的形成具有重要影响。

Abstract

The compositions of inclusions were analyzed in GCr15 steel in LF refining, RH degassing and continuous casting. The inclusions were composed of MgO·Al2O3 with a small amount of calcium aluminate after LF refining. Many MgO·Al2O3 inclusions were detected in the continuous casting although the inclusions were calcium aluminate after RH degassing. Using Al2O3-based tundish working lining and low content of MgO covering flux, and unchanging other parameters of continuous casting, MgO·Al2O3 inclusions were also be detected in large numbers in the tundish, indicating the reaction of steel-slag-refractory in the tundish was not the mainly reason for the formation of MgO·Al2O3 inclusions. However, many MgO·Al2O3 inclusions could be detected when the molten steel without MgO·Al2O3 inclusions reacted with the packing sand with high contents of SiO2, Cr2O3 and Fe2O3, which means the slight oxidation of molten steel could lead to the formation of MgO·Al2O3 inclusions. High contents of FeO and Cr2O3were found in the tundish flux and decreased with the casting goes on, indicating the existence of the reactions between Al in the molten steel and FeO, Cr2O3in the tundish flux, which leads to the oxidation of molten steel. Therefore, the composition control of tundish flux was important to the formation of MgO·Al2O3 inclusions.

关键词

轴承钢 / 连铸 / MgO·Al2O3 / 氧化 / 中间包 / 覆盖剂

Key words

GCr15 / continuous casting / MgO·Al2O3 / oxidation / tundish / covering flux

图表

引用本文

导出引用
张建斌, 徐建飞, 王昆鹏, . GCr15轴承钢连铸过程MgO·Al2O3夹杂物形成机理[J]. 钢铁, 2023, 58(5): 83-91 https://doi.org/10.13228/j.boyuan.issn0449-749x.20220703
ZHANG Jian-bin, XU Jian-fei, WANG Kun-peng, et al. Formation mechanism of MgO·Al2O3 inclusions in GCr15 steel in continuous casting[J]. Iron and Steel, 2023, 58(5): 83-91 https://doi.org/10.13228/j.boyuan.issn0449-749x.20220703

参考文献

[1] 李权辉, 陶镳, 徐志祥, 等. 连铸保护渣对GCr15轴承钢铸坯渣沟缺陷的影响[J]. 连铸, 2021(1): 55. (LI Quan-hui, TAO Biao, XU Zhi-xiang, et al. Effect of mold slag on slag-scratch on continuous casting billet of GCr15 bearing steel[J]. Continuous Casting, 2021(1): 55.)
[2] 史智越, 徐海峰, 许达, 等. 冶金工艺对GCr15高周旋转弯曲疲劳性能的影响[J]. 钢铁, 2018, 53(11): 85. (SHI Zhi-yue, XU Hai-feng, XU Da, et al. Effects of metallurgical craftwork on high bending fatigue performance of GCr15 steel during high cycle rotation[J]. Iron and Steel, 2018, 53(11): 85.)
[3] 车晓健, 杨卯生, 唐海燕, 等. 高性能GCr15轴承钢中夹杂物控制与疲劳性能[J]. 钢铁, 2018, 53(5): 76. (CHE Xiao-jian, YANG Mao-sheng, TANG Hai-yan, et al. Inclusion control and fatigue performance in high performance GCr15 bearing steel[J]. Iron and Steel, 2018, 53(5): 76.)
[4] 田超, 刘剑辉, 董瀚. 高洁净轴承钢夹杂物评价与滚动接触疲劳寿命[J]. 上海金属, 2018, 40(4): 1. (TIAN Chao, LIU Jian-hui, DONG Han. Inclusions evaluation and rolling contact fatigue life of high clean bearing steels[J]. Shanghai Metals, 2018, 40(4): 1.)
[5] 王坤, 胡锋, 周雯, 等. 轴承钢研究现状及发展趋势[J]. 中国冶金, 2020, 30(9): 119. (WANG Kun, HU Feng, ZHOU Wen, et al. Research status and development trend of bearing steel[J]. China Metallurgy, 2020, 30(9): 119.)
[6] 龙鹄, 成国光, 丘文生, 等. 轴承钢中大尺寸夹杂物的特征、来源及改进工艺[J]. 中国冶金, 2020, 30(9): 53. (LONG Hu, CHENG Guo-guang, QIU Wen-sheng, et al. Characteristics, sources analysis of large size inclusions and technical improvement during bearing steel production[J]. China Metallurgy, 2020, 30(9): 53.)
[7] 李永超, 卢彩玲, 左健成, 等. 轴承钢中间包首炉大型夹杂物分析及控制[J]. 连铸, 2021(3): 35. (LI Yong-chao, LU Cai-ling, ZUO Jian-cheng, et al. Analysis and control of macro-inclusions of bearing steel in tundish first heat[J]. Continuous Casting, 2021(3): 35.)
[8] 马帅, 李阳, 姜周华, 等. Ce对440C不锈轴承钢夹杂物演变的影响[J]. 中国冶金, 2022, 32(6): 71. (MA Shuai, LI Yang, JIANG Zhou-hua, et al. Effect of Ce on inclusion evolution for 440C stainless bearing steel[J]. China Metallurgy, 2022, 32(6): 71.)
[9] 朱雷敏, 李莉娟, 罗坤坤, 等. PMO对GCr15轴承钢连铸坯中MnS夹杂物的影响[J]. 中国冶金, 2021, 31(12): 32. (ZHU Lei-min, LI Li-juan, LUO Kun-kun, et al. Effect of PMO on MnS inclusions in continuous casting billet of GCr15 bearing steel[J]. China Metallurgy, 2021, 31(12): 32.)
[10] 王昆鹏, 王郢, 徐建飞, 等. 轴承钢二次精炼过程夹杂物演变规律[J]. 钢铁, 2022, 57(6): 42. (WANG Kun-peng, WANG Ying, XU Jian-fei, et al. Investigation on evolution of inclusions in bearing steel during secondary refining[J]. Iron and Steel, 2022, 57(6): 42.)
[11] 王康豪, 姜敏, 李凯伦, 等. GCr15轴承钢BOF-LF-RH-CC流程夹杂物的生成及演变[J]. 钢铁, 2022, 57(10): 64. (WANG Kang-hao, JIANG Min, LI Kai-lun, et al. Formation and evolution of inclusions in GCr15 bearing steel produced by process of BOF-LF-RH-CC[J]. Iron and Steel, 2022, 57(10): 64.)
[12] 蒋鲤平, 徐建飞, 王昆鹏, 等. 高碳铬GCr15轴承钢中镁铝夹杂物形成与控制工艺实践[J]. 特殊钢, 2022, 43(4): 41. (JIANG Li-ping, XU Jian-fei, WANG Kun-peng, et al. Formation of magnesium-aluminum inclusion in high carbon chromium GCr15 bearing steel and control process practice[J]. Special Steel, 2022, 43(4): 41.)
[13] 李林,江野,吴建永,等.GCr15钢浇注过程浸入式水口结瘤的原因及控制[J]. 上海金属, 2020, 42(6):35. (LI Lin, JIANG Ye, WU Jian-yong, et al. Formation and control of blockage at submerged nozzle of mold during GCr15 steel casting[J]. Shanghai Metals, 2020, 42(6):35.)
[14] 赵新凯, 田凤喜, 高文娟, 等. 轴承钢连铸过程中非金属夹杂物群迁移行为的分析[J]. 连铸, 2022(5): 50. (ZHAO Xin-kai, TIAN Feng-xi, GAO Wen-juan, et al. Behavior analysis of non-metallic inclusion groups in bearing steel during bloom casting[J]. Continuous Casting, 2022(5): 50.)
[15] WANG X, LI X, HUANG F, et al. Control of stringer shaped non-metallic inclusions of CaO-Al2O3 system in API X80 linepipe steel plates[J]. Steel Research International, 2014, 85(2):155.
[16] YANG D, WANG X, YANG G, et al. Inclusion evolution and estimation during secondary refining in calcium treated aluminum killed steels[J]. Steel Research International, 2014, 85(11):1517.
[17] YANG W, CAO J, WANG X, et al. Investigation on non-metallic inclusions in LCAK steel produced by BOF-LF-FTSC production route[J]. Journal of Iron and Steel Research International, 2011, 18(9): 6.
[18] YANG J, WANG X, JIANG M, et al. Effect of calcium treatment on non-metallic inclusions in ultra-low oxygen steel refined by high basicity high Al2O3 slag[J]. Journal of Iron and Steel Research International, 2011, 18(7): 8.
[19] 杨光维, 郝鑫, 杨叠,等. GCr15轴承钢冶炼过程钢液洁净度变化[J]. 钢铁, 2014, 49(11): 31. (YANG Guang-wei, HAO Xin, YANG Die, et al. Cleanliness of GCr15 bearing steel during steelmaking process[J]. Iron and Steel, 2014, 49(11): 31.)
[20] 耿鑫, 宋波, 刘涛, 等. 38CrMoAl钢精炼过程夹杂物生成及演变规律[J]. 中国冶金, 2022, 32(11): 106. (GENG Xin, SONG Bo, LIU Tao, et al. Inclusion generation and evolution of 38CrMoAl steel in refining process[J]. China Metallurgy, 2022, 32(11): 106.)
[21] 王康, 刘剑辉, 杨树峰, 等. GCr15 轴承钢 EAF-LF-VD-CC 流程非金属夹杂物的演变[J]. 钢铁, 2020, 55(2): 48. (WANG Kang, LIU Jian-hui, YANG Shu-feng, et al. Evolution of non-metallic inclusions in EAF-LV-VD-CC process of GCr15 bearing steel[J]. Iron and Steel, 2020, 55(2):48.)
[22] 王章印, 姜敏, 王新华. Q345D 钢精炼过程夹杂物生成及演变行为[J]. 钢铁, 2022, 57(2): 63. (WANG Zhang-yin, JIANG Min, WANG Xin-hua. Formation and evolution of inclusions in Q345D steel during secondary refining process[J]. Iron and Steel, 2022, 57(2): 63.)
[23] 王强, 朱航宇, 孙剑, 等. SWRCH45K冷镦钢非金属夹杂物生成及演变行为[J]. 中国冶金, 2020, 30(11): 41. (WANG Qiang, ZHU Hang-yu, SUN Jian, et al. Formation and evolution behavior of non-metallic inclusions in SWRCH45K cold heading steel[J]. China Metallurgy, 2020, 30(11): 41.)
[24] Todoroki H, Mizuno K. Effect of silica in slag on inclusion compositions in 304 Stainless steel deoxidized with aluminum[J]. ISIJ International, 2004, 44(8):1350.
[25] Matsumoto T, Watanabe Y, Yamauchi T. Recent development to decrease spinel-type inclusions by modification of slag composition at ladle furnace[C]//AISTech 2018 Conference Proceedings. Philadelphia: Association for Iron and Steel Technology, 2018: 1273.
[26] WEN B, SONG B, PAN N, et al. Effect of SiMg alloy on inclusions and microstructures of 16Mn steel[J]. Ironmaking and Steelmaking, 2011, 38(8): 577.
[27] LIU C, HUANG F, SUO J, et al. Effect of magnesia-carbon refractory on the kinetics of MgO·Al2O3 spinel inclusion generation in extra-low oxygen steels[J]. Metallurgical and Materials Transactions B, 2016, 47(2): 989.
[28] LIU C Y, YAGI M, GAO X, et al. Dissolution behavior of Mg from magnesia-chromite refractory into Al-killed molten steel[J]. Metallurgical and Materials Transactions B, 2018, 49(5): 2298.
[29] LIU C Y, YAGI M, GAO X, et al. Kinetics of transformation of Al2O3 to MgO·Al2O3 spinel inclusions in Mg-containing steel[J]. Metallurgical and Materials Transactions B, 2018, 49(1): 113.
[30] LIU C, HUANG F, WANG X. The effect of refining slag and refractory on inclusion transformation in extra low oxygen steels[J]. Metallurgical and Materials Transactions B, 2016, 47(2): 999.
[31] 王新华, 姜敏, 于会香, 等. 超低氧特殊钢中非金属夹杂物研究[J]. 炼钢, 2015, 31(6): 1. (WANG Xin-hua, JIANG Min, YU Hui-xiang, et al. Investigation on non-metallic inclusions in ultra-low oxygen special steels[J]. Steelmaking, 2015, 31(6): 1.)
[32] 周力, 马建超, 刘从德, 等. 二次氧化及钙处理对超低氧特殊钢中非金属夹杂物的影响[J]. 炼钢, 2017, 33(5): 66. (ZHOU Li, MA Jian-chao, LIU Cong-de, et al. Influence of reoxidation and calcium treatment on nonmetallic inclusions in ultra-low oxygen special steel[J]. Steelmaking, 2017, 33(5): 66.)
[33] Sasai K, Mizukami Y. Effect of stirring on oxidation rate of molten steel[J]. ISIJ International, 1996, 36(4): 388.
[34] Sasai K, Mizukami Y. Effects of tundish cover powder and teeming stream on oxidation rate of molten steel in tundish[J]. ISIJ International, 1998, 38(4): 332.

PDF(3000 KB)

Accesses

Citation

Detail

段落导航
相关文章

/