带式焙烧机球团原料预处理工艺优化

刘山平, 马磊, 宋云锋, 过刚, 雷杰, 龙红明

钢铁 ›› 2023, Vol. 58 ›› Issue (6) : 36-44.

PDF(3337 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月26日 星期六
PDF(3337 KB)
钢铁 ›› 2023, Vol. 58 ›› Issue (6) : 36-44. DOI: 10.13228/j.boyuan.issn0449-749x.20220759
原料与炼铁

带式焙烧机球团原料预处理工艺优化

  • 刘山平1, 马磊2,3, 宋云锋1, 过刚1, 雷杰2, 龙红明2,3
作者信息 +

Optimization of pretreatment process of pelletizing raw materials in belt roasters

  • 刘山平1, 马磊2,3, 宋云锋1, 过刚1, 雷杰2, 龙红明2,3
Author information +
文章历史 +

摘要

带式焙烧机是单机大型化球团生产工艺之一,高压辊磨、强力混匀等原料预处理工艺的合理搭配是拓展原料适应性、减少膨润土消耗、改善球团质量的有效手段。针对某钢铁企业带式焙烧机原料预处理流程中辊磨压力过剩和原料处理系数较低等问题,开展了高压辊磨、强力混合联接的工业试验,揭示了辊压强度、上料量等工艺参数对球团的成球性及强度的影响规律,为球团生产的提质降耗提供理论指导。结果表明,辊磨机的上料量与辊压大小对原料粒度和比表面积均有影响,随着上料量减少或辊压提高,原料粒度变细,比表面积增加。在上料量为500 t/h、辊压为90 MPa时,混合料中粒度小于44 μm所占比例由辊磨前的72.20%上升至83.94%,粒度小于74 μm比例由辊磨前的89.96%上升至95.82%;经过强力混合后,原料中0.044 mm和0.074 mm粒级的比例基本不变,但是粒度分布更加均衡;膨润土和水结合后毛细水和分子水均有较大幅度的提升,所提供的分子力使大颗粒表面黏附较多细微颗粒物,比表面积由辊磨前的922.88 cm2/g增加至1 411.15 cm2/g,成球性能得到改善。预处理原料应用于生产时,生球落下强度为5.0~7.0 次/(0.5 m),同时,膨润土消耗降低2~3 kg/t,铁品位提高0.05%~0.16%,显著改善了带式焙烧机球团原料质量与生产效率。

Abstract

Belt roasting machine is one of the production processes of single-large-scale pellet. The reasonable collocation of raw material pretreatment processes such as high pressure grinding rolls and strong mixing is an effective means to expand the adaptability of raw materials, reduce bentonite consumption and improve the quality of pellets. In response to the problems of excessive roller mill pressure and low raw material handling coefficient in the raw material pretreatment process of belt roasting machine in an iron and steel enterprise, the industrial tests of high-pressure roller mill coupling with powerful mixing were carried out to reveal the influence law of process parameters such as roller pressure strength and feeding volume on the sphericity and strength of pellets to provide theoretical guidance for improving quality and reducing consumption in pelletizing. The results showed that the feeding quantity and pressure of the roller mill had an effect on the particle size and specific surface area of raw materials. With the reduction of the feeding quantity or the increase of the roller pressure, the particle size of raw materials was finer and the specific surface area were lager. When the loading volume was 500 t/h and the roll pressure was 90 MPa, the proportion of the mixture with a particle size less than 44 μm increased from 72.20% before roller grinding to 83.94%, and the proportion of particle size less than 74 μm increased from 89.96% before roller grinding to 95.82%. After strong mixing, the proportion of 0.044 mm和0.074 mm particle size was basically unchanged, but the particle size distribution was more balanced. After the combination of bentonite and water, the lager molecular force provided by the capillary water and molecular water were substantially increased, resulted that the surface of large particles adhere to more fine particles. The specific surface area increased from 922.88 cm2/g before roller grinding to 1 411.15 cm2/g, and the sphere-forming performance was improved. When the pretreated raw material was applied to production, the green pellet falling strength was 5.0-7.0 times/(0.5 m). Meanwhile, the bentonite consumption was reduced by 2-3 kg/t and the iron grade was increased by 0.05%-0.16%, which significantly improved the quality and production efficiency of pellet in belt roasting machine.

关键词

带式焙烧机 / 生球质量 / 高压辊磨 / 强力混合 / 工艺优化

Key words

belt roaster / green pellet quality / high pressure roller grinding / strong mixing / process optimization

图表

引用本文

导出引用
刘山平, 马磊, 宋云锋, . 带式焙烧机球团原料预处理工艺优化[J]. 钢铁, 2023, 58(6): 36-44 https://doi.org/10.13228/j.boyuan.issn0449-749x.20220759
LIU Shanping, MA Lei, SONG Yunfeng, et al. Optimization of pretreatment process of pelletizing raw materials in belt roasters[J]. Iron and Steel, 2023, 58(6): 36-44 https://doi.org/10.13228/j.boyuan.issn0449-749x.20220759

参考文献

[1] 王新东.适应高比例球团冶炼的高炉系统设计与生产实践[J].钢铁,2022,57(12):1.(WANG X D. Design and production practice of blast furnace system suitable for high-proportion pellet smelting[J].Iron and Steel,2022,57(12):1.)
[2] 廖军平,陈昭尧.SG带式焙烧机镁质球团矿的生产应用[J].中国冶金,2021,31(10):51.(LIAO J P,CHEN Z Y. Production and application of magnesia pellets in SG belt roaster[J].China Metallurgy,2021,31(10):51.)
[3] 胡长松.首钢高炉新炉料结构下球团技术的探索与应用[J].中国冶金,2021,31(6):54.(HU C S. Exploration and application of pelletizing technology under new charge structure of Shougang blast furnace[J].China Metallurgy,2021,31(6):54.)
[4] 朱德庆,黄伟群,杨聪聪,等.铁矿球团技术进展[J].烧结球团,2017,42(3):42.(ZHU D Q,HUANG W Q,YANG C C,et al. Iron ore pellet technology progress[J]. Sintered Pellets,2017,42(3):42.)
[5] 王新东,金永龙.高炉使用高比例球团的战略思考与球团生产的试验研究[J].钢铁,2021,56(5):7.(WANG X D,JIN Y L. Strategic thinking and experimental study on pellet production using high proportion pellets in blast furnace[J].Iron and Steel,2021,56(5):7.)
[6] 张淑会,王宝勇,兰臣臣,等.球团矿化学成分控制现状及展望[J].钢铁,2020,55(8):19.(ZHANG S H,WANG B Y,LAN C C,et al. Current status and prospect of chemical composition control of pellets[J].Iron and Steel,2020,55(8):19.)
[7] 王新东,金永龙.“双碳”背景下高炉使用高比例球团的展望[J].过程工程学报,2022,22(10):1379.(WANG X D, JIN Y L.The prospect of using high-proportion pellets in blast furnaces under the background of "double carbon"[J].Chinese Journal of Process Engineering,2022,22(10):1379.)
[8] 张辉,夏铁玉,宫作岩,等.带式焙烧机球团生产提质降耗措施[J].烧结球团,2021,46(3):59.(ZHANG H,XIA T Y,GONG Z Y,et al. Measures to improve quality and reduce consumption in belt roaster pellet production[J].Sintered Pellets,2021,46(3):59.)
[9] 胡文祥,陈昭尧,许宝科,等.带式焙烧机镁质球团制备及高炉应用情况[J].烧结球团,2021,46(3):53.(HU W X,CHEN Z Y,XU B K,et al. Preparation of magnesia pellets and application of blast furnace in belt roaster[J].Sintered Pellets,2021,46(3):53.)
[10] 智谦,韩志国,易毅辉,等.500万t/a带式焙烧机球团精矿干燥系统设计[J].中国冶金,2018,28(5):33.(ZHI Q,HAN Z G,YI Y H,et al.Design of pellet concentrate drying system for 5 million t/a belt roaster[J].China Metallurgy,2018,28(5):33.)
[11] 乔红梅,张建良,王耀祖,等.国内外钙质碱性球团生产实践及发展趋势[J].钢铁研究学报,2021,33(10):1031.(QIAO H M,ZHANG J L,WANG Y Z,et al. Practice and development trend of calcium-alkaline pellet production at home and abroad[J].Journal of Iron and Steel Research,2021,33(10):1031.)
[12] 王新东,金永龙.高炉使用高比例球团的战略思考与球团生产的试验研究[J].钢铁,2021,56(5):7(WANG X D,JIN Y L. Strategic thinking and experimental study on pellet production using high proportion pellets in blast furnace[J].Iron and Steel,2021,56(5):7.)
[13] 余海钊,廖继勇,范晓慧.带式焙烧机球团技术的应用及研究进展[J].烧结球团,2020,45(4):47.(YU H Z,LIAO J Y,FAN X H. Application and research progress of belt roaster pelletizing technology[J].Sintered Pellets,2020,45(4):47.)
[14] 张福明,张卫华,青格勒,等.大型带式焙烧机球团技术装备设计与应用[J].烧结球团,2021,46(1):66.(ZHANG F M,ZHANG W H,QING G L,et al. Design and application of pelletizing technology and equipment of large-scale belt roaster[J].Sintered Pellets,2021,46(1):66.)
[15] YUR′EV B, DUDKO V. Study of heat exchange processes during roasting of iron-ore pellets[J]. KnE Engineering, 2018, 3(5), 212.
[16] 梁宏志. 新型60 m2无起拱带式烧结机关键技术研究及工程实践[D]. 秦皇岛:燕山大学,2007.(LIANG H Z. Research on Key Technology and Engineering Practice of New 60 m2 Archless Belt Sintering Machine[D]. Qinhuangdao:Yanshan University,2007.]
[17] 刘克俭,李文斌,周胜良,等. 带式烧结机台车起拱的力学分析及仿真[J]. 烧结球团,2012,37(2):22.(LIU K J, LI W B, ZHOU S L, et al. Mechanical analysis and simulation of arching of belt sintering trolley[J]. Sintered Pellets,2012,37(2):22.)
[18] 解海波.504 m2带式焙烧机设计理论模型的分析论证[J].中国冶金,2015,25(2):21.(XIE H B.Analysis and demonstration of theoretical model of design model of 504 m2 belt roaster[J].China Metallurgy,2015,25(2):21.)
[19] 曹风,甘敏,范晓慧,等.带式机镁质球团热工制度仿真及优化[J].钢铁研究学报,2021,33(4):284.(CAO F,GAN M,FAN X H,et al. Simulation and optimization of thermal system of magnesium pellets in belt machine[J].Journal of Iron and Steel Research,2021,33(4):284.)
[20] 董书歧,李传收,谷华,等. 带式烧结机台车起拱及其改进[J]. 烧结球团,2005,30(2):39.(DONG S Q, LI C H, GU H, et al. Arching and improvement of belt sintering trolley[J]. Sintered Pellets,2005,30(2):39.)
[21] 许宝科,胡文祥,易安南,等.高压辊磨机边料循环工艺在球团生产中的应用[J].中国冶金,2021,31(8):49.(XU B K,HU W X,YI A N, et al. Application of offcuts cycle process of high pressure roller mill in pellet production[J].China Metallurgy,2021,31(8):49.)
[22] 朱德庆,唐艳云,VINICIUS M,等.巴西镜铁矿球团前的高压辊磨预处理[J].金属矿山,2008(4):67.(ZHU D Q,TANG Y Y,VINICIUS M,et al. Pretreatment of high-pressure roller milling before the pellet of Brazilian mirror iron ore[J].Metal Mine,2008(4):67.)
[23] 周文涛,胡俊鸽,郭艳玲. 国外烧结球团突破性技术研究进展[J]. 烧结球团,2015,40(2):1.(ZHOU W T,HU J G,GUO Y L. Research progress of breakthrough technology of sintered pellets abroad[J]. Sintered Pellets,2015,40(2):1.)
[24] 姜涛. 烧结球团生产技术手册[M]. 北京:冶金工业出版社,2014.(JIANG T. Technical Manual of Sintered Pellet Production[M]. Beijing:Metallurgical Industry Press,2014.)
[25] 张淑会,王宝勇,兰臣臣,等.球团矿化学成分控制现状及展望[J].钢铁,2020,55(8):19.(ZHANG S H,WANG B Y,LAN C C,et al. Current status and prospect of chemical composition control of pellets[J].Iron and Steel,2020,55(8):19.)
[26] 于洪军,路明,王兴锋,等.铁矿粉粒度组成对球团矿性能影响的研究进展[J].冶金能源,2022,41(1):21.(YU H J,LU M,WANG X F,et al. Research progress on the effect of iron ore powder particle size composition on pellet properties[J].Metallurgical Energy,2022,41(1):21.)
[27] 王欣,潘建,朱德庆,等.含镍、铬复合氧化球团的制备工艺[J].钢铁,2020,55(3):23.(WANG X,PAN J,ZHU D Q,et al. Preparation process of nickel-containing chromium-containing composite oxidation pellets[J].Iron and Steel,2020,55(3):23.)
[28] FORSMO S P E, APELQVIST A J, BJÖRKMAN B M T,et al. Binding mechanisms in wet iron ore green pellets with a bentonite binder[J]. Powder Technology, 2006,169(3):147.
[29] 黄柱成,李骞,杨永斌,等.混合料润磨预处理对氧化球团矿质量的影响[J].中南大学学报(自然科学版),2004,35(5):753.(HUANG Z C, LI Q, YANG Y B, et al. Effect of mixture grinding pretreatment on the quality of oxidized pellets[J].Journal of Central South University(Natural Science), 2004,35(5):753.)

基金

安徽省自然科学基金杰青资助项目(2208085J19); 国家自然科学基金面上资助项目(52174290)

PDF(3337 KB)

34

Accesses

0

Citation

Detail

段落导航
相关文章

/