整辊式板形仪波形演变机理

张桐源, 于华鑫, 廖霜, 杨昇, 刘宏民

钢铁 ›› 2023, Vol. 58 ›› Issue (6) : 82-92.

PDF(4937 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月26日 星期六
PDF(4937 KB)
钢铁 ›› 2023, Vol. 58 ›› Issue (6) : 82-92. DOI: 10.13228/j.boyuan.issn0449-749x.20220791
压力加工

整辊式板形仪波形演变机理

  • 张桐源1, 于华鑫1,2, 廖霜1, 杨昇1, 刘宏民1,2
作者信息 +

Waveform evolution mechanism of whole roller flatness meter

  • 张桐源1, 于华鑫1,2, 廖霜1, 杨昇1, 刘宏民1,2
Author information +
文章历史 +

摘要

在整辊式板形仪试验调试和工业应用中发现,大包角和大张力的情况下,板形辊内部传感器会输出明显区别于常规单峰波形信号的双峰波形信号。板形辊变包角安装时,存在着单峰波形向双峰波形过渡的情况,甚至在不同检测通道中,存在单、双峰波形共存的现象。由于双峰波形从形式上明显不同于单峰波形,如果按照常规单峰信号处理方式处理这种波形信号会产生明显板形检测误差。为了研究波形演变的原因和规律,设计了四辊变张力、变包角计算模型,并将其应用于有限元仿真计算。结果显示,大张力和大包角是板形仪输出信号中产生双峰波形的主要影响因素。在特定张力的条件下,单峰波形会随着包角的增大而逐渐演变为双峰波形;在特定包角条件下,单峰波形又会随着张力的增大而逐渐演变为双峰波形。为了进一步研究波形演变机理,在20°、30°和40°包角下,分别固定施加在板形辊单通道上的张力进行仿真计算,提取了传感器安装孔顶和两侧面的位移变化,得到了波形关键位置对应带材与辊体相对位置的传感器顶面位移变化。分析发现,传感器安装孔轮廓在大张力、大包角下会产生不规则的微变形,使得传感器受力状态和位移趋势发生改变,从而产生单、双峰波形信号演变的现象。通过搭建试验平台进行了等张力变包角试验和等包角变张力试验,还原了仿真波形曲线演变规律,验证了其结果的正确性。最后,分析了仿真波形曲线与实际波形曲线差异的产生原因,并针对如何避免双峰波形对整辊式板形仪检测带来的影响给出了具体建议。

Abstract

It is found in the test debugging and industrial application of the whole roller flatness meter that under the condition of large wrapping angle and large tension, the sensor inside will output the double peak waveform signal which is obviously different from the conventional single peak waveform signal. When the flatness meter is installed at variable wrapping angle condition, there is a transition from single peak waveform to double peak waveform and there is even a coexistence of single and double peak waveform in different detection channels. Since the shape of the double peak waveform is obviously different from that of the single peak one, obvious flatness detection error will be generated if the waveform signal is processed by conventional signal processing method. In order to study the cause and law of waveform evolution, a four rolls model of variable tension and variable wrapping angle was designed and applied to the finite element simulation. The results show that large tension and large wrapping angle are the main factors affecting the double peak waveform in the output signal of the flatness meter. The single peak waveform will gradually evolve into the double peak waveform with the increase of wrapping angle under certain conditions of tension and the single peak waveform will gradually evolve into double peak waveform with the increase of tension under the condition of specific wrapping angle. In order to further study the evolution mechanism of the waveform, the tension fixed on the single channel of the detection roll and it was simulated under the 20°, 30° and 40° wrapping angles, respectively. The displacement changes of the top and two sides of the sensor mounting holes were extracted, and the displacement changes of the top surface of the sensor corresponding to the relative position of the strip and the roll body were obtained. It is found that the profile of the mounting hole of the sensor will produce irregular micro-deformation under large tension and large wrapping angle, which changes the stress state and displacement trend of the sensor, resulting in the evolution of single and double peak waveform signals. By setting up a experimental platform, the constant tension variable wrapping angle test and constant wrapping angle variable tension test were carried out. The evolution law of the simulation waveform curve was restored and the correctness of the results was verified. Finally, the reasons for the difference between the simulated waveform curve and the actual waveform curve are analyzed, and specific suggestions are given on how to avoid the influence of double peak waveform on the detection of the whole roller flatness meter.

关键词

整辊式板形仪 / 检测信号 / 有限元分析 / 波形演变因素 / 波形产生机理

Key words

whole roller flatness meter / detection signal / finite element analysis / waveform evolution factor / waveform producing mechanism

图表

引用本文

导出引用
张桐源, 于华鑫, 廖霜, . 整辊式板形仪波形演变机理[J]. 钢铁, 2023, 58(6): 82-92 https://doi.org/10.13228/j.boyuan.issn0449-749x.20220791
ZHANG Tongyuan, YU Huaxin, LIAO Shuang, et al. Waveform evolution mechanism of whole roller flatness meter[J]. Iron and Steel, 2023, 58(6): 82-92 https://doi.org/10.13228/j.boyuan.issn0449-749x.20220791

参考文献

[1] 孙杰,单鹏飞,彭文,等. 基于数据降噪的冷轧板形调控功效系数获取[J]. 钢铁,2021,56(6):67. (SUN J,SHAN P F,PENG W,et al. Cold-rolled flatness actuator efficiency coefficient obtaining based on data noise reduction[J]. Iron and Steel,2021,56(6):67.)
[2] 翟俊,郎炜昀,杨永杰. 不锈钢典型夹杂物在轧制过程的衍变分析[J]. 中国冶金,2023,33(1):123. (ZHAI J,LANG W Y,YANG Y J. Analysis for evolution of typical inclusions in stainless steel during rolling[J]. China Metallurgy,2023,33(1):123.)
[3] 魏陈阳,周全,陈乐平,等. 瞬时脉冲电流对冷轧AZ31镁合金组织与力学性能的影响[J]. 特种铸造及有色合金,2022,42(10):1296. (WEI C Y,ZHOU Q,CHEN L P,et al. Effects of instantaneous pulse current on microstructure and mechanical properties of cold rolled AZ31 magnesium alloy[J].Special Casting and Nonferrous Alloys,2022,42(10):1296.)
[4] 张兵,王建平,张志娟,等. 冷轧对TiNi合金组织及力学性能的影响[J]. 稀有金属材料与工程,2022,51(10):3802.(ZHANG B,WANG J P,ZHANG Z J,et al. lnfluence of cold rolling on microstructure and mechanical properties of TiNi alloy[J]. Rare Metal Materials and Engineering,2022,51(10):3802.)
[5] 刘楠,李智斌,胡可柱,等. SK85高强度板材冷轧工艺参数对板形的影响[J]. 塑性工程学报,2022,29(6):94. (LIU N,LI Z B,HU K Z,et al. Influence of cold rolling process parameters on shape of SK85 high-strength steel plate[J]. Journal of Plasticity Engineering,2022,29(6):94.)
[6] 王鹏飞,张殿华,刘佳伟,等. 1 450冷连轧机板形控制系统分析与改进[J]. 中国冶金,2009,19(9):31. (WANG P F,ZHANG D H,LIU J W,et al. Analysis and lmprovement for flatness control system of 1 450 tandem cold mill[J]. China Metallurgy,2009,19(9):31.)
[7] 白振华,姜明光,蒋青林,等. 八辊冷轧机组弯辊与窜辊对板形的影响及其综合设定技术[J]. 塑性工程学报,2019,26(3):286. (BAI Z H,JIANG M G,JIANG Q L,et al. Influence of bending roll and roll shift on shape in eight-high cold rolling mill and its comprehensive setting technique[J]. Journal of Plasticity Engineering,2019,26(3):286.)
[8] 渠福泉,李旭,张宇峰,等. 冷轧工作辊热凸度及其对板形影响[J]. 中国冶金,2022,32(4):84.(QU F Q,LI X,ZHANG Y F,et al. Thermal crown of cold rolling work roll and its effect on strip shape[J]. China Metallurgy, 2022, 32(4):84.)
[9] 于丙强,杨利坡,高朋. 冷轧带钢板形测量方法对比分析[J]. 钢铁研究学报,2014,26(5):36. (YU B Q,YANG L P,GAO P. Comparison of shape measurement methods of cold rolling strip[J]. Journal of Iron and Steel Research,2014,26(5):36.)
[10] MOLLEDA J,USAMENTIAGA R,GARCÍA D. On-line flatness measurement in the steelmaking industry[J]. Sensors,2013,13(8):10245.
[11] 罗敏. 板形曲线动态设定在孔洞钢带轧制中的应用[J]. 中国冶金,2015,25(6):49. (LUO M. Application of flatness curve dynamic set on the hole in strip rolling process[J]. China Metallurgy,2015,25(6):49.)
[12] 孙杰,陈树宗,王云龙,等. 冷连轧关键质量指标与轧制稳定性智能优化控制技术[J]. 钢铁研究学报,2022,34(12):1387.(SUN J,CHEN S Z,WANG Y L,et al. Intelligent optimization control technology for key quality indexes and rolling stability of tandem cold rolling[J]. Journal of Iron and Steel Research,2022,34(12):1387.)
[13] 崔熙颖,王植,滕华湘,等. 冷连轧过程碎边浪缺陷形成机理及智能综合控制技术[J]. 冶金自动化,2022,46(6):111.(SUI X Y,WANG Z,TENG H X,et al. Forming mechanism and intelligent integrated control technology of broken edge waves defect in cold tandem rolling process[J]. Metallurgical Industry Automation,2022,46(6):111.)
[14] 王伟,林威,王楠,等. 以板形控制为目标的冷连轧过程压下规程优化技术[J]. 塑性工程学报,2022,29(3):73.(WANG W,LIN W,WANG N,et al. Optimization technology of reduction schedule in cold tandem rolling process aiming at shape control[J].Journal of Plasticity Engineering,2022,29(3):73.)
[15] 白涛. 基于遗传算法优化的云模型PID液压弯辊板形控制[J]. 塑性工程学报,2021,28(4):206.(BAI T. Hydraulic bending roll flatness control of cloud model PID based on genetic alogorithm optimization[J]. Journal of Plasticity Engineering,2021,28(4):206.)
[16] 丁肇印,丁成砚,孙杰,等. 基于类别特征梯度提升的冷轧带钢板形预测模型[J]. 轧钢,2022,39(6):99.(DING Z Y,DING C Y,SUN J,et al. Prediction model of cold rolled strip flatness based on CatBoost[J]. Steel Rolling,2022,39(6):99.)
[17] 何安瑞. 热轧宽带钢板形控制技术的现状及未来发展[J]. 轧钢,2022,39(3):1.(HE A R. Present situation and future development of profile and flatness control technologies of hot rolled wide strip[J]. Steel Rolling,2022,39(3):1.)
[18] 王国栋.均匀化冷却技术与板带材板形控制[J]. 上海金属,2007(6):1.(WANG G D. Strip shape control and homogeneous cooling technique[J]. Shanghai Metals,2007(6):1.)
[19] 宋沙沙,桑圣峰,闻杨,等. 1 420 mm酸轧机组带钢板形分析与控制研究[J]. 轧钢,2022,39(5):108.(SONG S S,SANG S F,WEN Y,et al. Analysis and control research on strip shape of 1 420 mm PL-TCM[J].Steel Rolling,2022,39(5):108.)
[20] 尚飞,李申光,李艳琳. 辊形配置对辊间接触压力与板形调控影响分析[J]. 中国冶金,2022,32(8):124.(SHANG F,LI S G,LI Y L. Influence analysis of roll configuration on contact pressure and flatness control[J]. China Metallurgy,2022,32(8):124.)
[21] WANG D C,LIU H M,LIU J. Research and development trend of shape control for cold rolling strip[J]. Chinese Journal of Mechanical Engineering,2017,30(5):1248.
[22] MAGNE S,LEGRAND N,ERTZ S, et al. New shapemeter roll technology based on Fiber Bragg Grating technology for on-line flatness monitoring of thin cold rolled metal sheets[J]. Journal of Applied Physics,2022,131(22):224502.
[23] LIU X. Application of NDC flatness (width) meter in the Tangshan Steel[J]. Intelligent Building and Construction Machinery,2022,4(2):44.
[24] OUYANG Q,WEN C,SONG Y,et al. Approach for designing and developing high-precision integrative systems for strip flatness detection[J]. Applied Optics,2015,54(28):8429.
[25] ALONSO M,IZAGUIRRE A,ANDONEGUI I,et al. An application of laser measurement to on-line metal strip flatness measurement[C]//15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020). Burgos, Spain: Springer, Cham,2020:835.
[26] 张帅,于华鑫,张桐源,等. 冷轧带钢板形辊激光熔覆表面强化试验[J]. 钢铁,2021,56(7):94. (ZHANG S,YU H X,ZHANG T Y,et al. Experiment on laser cladding surface strengthening of flatness roll for cold-rolled steel strip[J]. Iron and Steel,2021,56(7):94.)
[27] 刘宏民,刘军,于丙强,等. 带钢冷轧机整辊无线式板形仪和智能板形控制系统[J]. 机械工程学报,2017,53(12):87. (LIU H M,LIU J,YU B Q,et al. Entire roller wireless shape meter and intelligent shape control system for cold steel strip mills[J]. Journal of Mechanical Engineering,2017,53(12):87.)
[28] 刘佳伟,张殿华,王鹏飞,等. 板形测量辊输出信号处理方法的研究与应用[J]. 钢铁研究学报,2010,22(2):59. (LIU J W,ZHANG D H,WANG P F,et al. Research and application of shape measuring roll output signal processing method[J]. Journal of Iron and Steel Research,2010,22(2):59.)
[29] USAMENTIAGA R,GARCIA D F,MOLLEDA J,et al. Vibrations in steel strips: Effects on flatness measurement and filtering[C]//2013 IEEE Industry Applications Society Annual Meeting. Lake Buena Vista,FL,USA:IEEE,2013:1.
[30] 赵章献,王东城,王鹏飞,等.板形仪位置误差补偿模型的研究及应用[J]. 钢铁,2015,50(3):49. (ZHAO Z X,WANG D C,WANG P F,et al. Research and application of position error compensation model for shape meter[J]. Iron and Steel,2015,50(3):49.)
[31] 李荣民,杨利坡,于丙强,等. 检测辊安装精度对冷轧带钢在线板形信号的影响[J]. 钢铁,2013,48(7):40. (LI R M,YANG L P,YU B Q,et al. Effect of detection roll installation precision on online shape signal of cold rolling strip[J]. Iron and Steel,2013,48(7):40.)
[32] 白振华,张立更,崔熙颖,等. 冷轧薄板离线板形测量误差分析及其修正技术[J]. 塑性工程学报,2020,27(4):164. (BAI Z H,ZHANG L G,CUI X Y,et al. Error analysis and correction technology of off-line flatness measurement of cold rolled sheet[J]. Journal of Plasticity Engineering,2020,27(4):164.)
[33] 杨利坡,于丙强,李荣民,等. 冷轧带钢板形检测误差及异常信号补偿模型[J]. 机械工程学报,2014,50(6):30.(YANG L P,YU B Q,LI R M,et al. Compensation model of abnormal signal and shape detection error of cold rolling strip[J]. Journal of Mechanical Engineering,2014,50(6):30.)
[34] 王东城,徐扬欢,于华鑫,等. 整辊内嵌式板形仪挠度干扰信号的消除方法[J]. 钢铁,2020,55(10):56.(WANG D C,XU Y H,YU H X,et al. Method of eliminating deflection interference signal of whole roll embedded flatness meter[J]. Iron and Steel,2020,55(10):56.)
[35] YU H X,ZHANG T Y,ZHANG S,et al. Quick recognition and elimination of an additional signal caused by deflection of an integral roller flatness meter[J]. ISIJ International,2021,61(10):2571.
[36] YU H X,WANG D C,LIU H M,et al. Modelling and application of signal decoupling of adjacent channels of a whole-roller seamless flatness meter[J]. ISIJ International,2020,60(5):939.

基金

国家自然科学基金区域创新发展联合基金资助项目(U21A20118); 国家重点研发计划资助项目(2021YFB3401004); 河北省“巨人计划”创新团队及领军人才基金资助项目(4570019)

PDF(4937 KB)

35

Accesses

0

Citation

Detail

段落导航
相关文章

/