酒钢铁前系统氯元素迁移行为

蒋心泰, 鲁逢霖, 施煌禹, 王翠, 张建良

钢铁 ›› 2023, Vol. 58 ›› Issue (6) : 53-60.

PDF(804 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月29日 星期二
PDF(804 KB)
钢铁 ›› 2023, Vol. 58 ›› Issue (6) : 53-60. DOI: 10.13228/j.boyuan.issn0449-749x.20220800
原料与炼铁

酒钢铁前系统氯元素迁移行为

  • 蒋心泰1, 鲁逢霖1, 施煌禹2, 王翠3, 张建良2
作者信息 +

Migration behavior of chlorine elements in iron-making process of Jiuquan Iron and Steel (Group) Co., Ltd.

  • 蒋心泰1, 鲁逢霖1, 施煌禹2, 王翠3, 张建良2
Author information +
文章历史 +

摘要

铁前系统氯元素迁移行为对高炉氯负荷及高炉原燃料冶金性能、煤气管道系统、TRT发电系统、热风炉耐火材料等具有重要影响。高炉大型化、集约化发展趋势日益显著,大容积高炉占比逐年提高,氯元素侵蚀给企业带来较大经济损失。为了理清高炉中氯元素的来源和排出途径,明晰氯元素的侵蚀机理,将铁前系统作为整体,研究氯元素的迁移路径,为降低高炉氯负荷及其对高炉和附属系统的危害提供理论依据十分必要。以酒钢某高炉为研究对象,对选矿、烧结、高炉3个工序所使用及产出的物料进行取样,采用离子色谱法对样品氯含量进行检测。通过氯元素平衡分析计算发现,选矿工序中的黑沟矿带入了大部分的氯元素;在烧结工序中自产精矿带入的氯元素占大部分;而在高炉系统中含铁炉料是酒钢高炉氯元素的最大来源,其次是焦炭和煤粉。高炉系统中的氯元素除了高炉煤气带出外,其余布袋灰带出氯元素的比例也较高。针对酒钢高炉的氯负荷现状,从源头上降低氯元素进入到选矿工序、烧结工序和高炉系统的量,通过喷吹低氯含量的煤粉和配加低氯含量的焦炭来限制高炉中氯元素的入炉负荷,在烧结工序对除尘灰的氯元素进行脱除,并降低氯元素在高炉内的循环富集,可大大减轻氯元素给高炉及其附属设备带来的危害。

Abstract

The migration behavior of chlorine in the iron-making process has an important influence on the chlorine load of the blast furnace, the metallurgical performance of raw materials and fuels, the gas pipeline system, the TRT power generation system, and the refractory of the hot stove. With the obvious development of large-scale and intensive blast furnaces, the proportion of large-scale blast furnaces increases year by year, and the erosion of chlorine elements brings great economic losses to steel enterprises. To clarify the various sources and discharges of chlorine elements in the blast furnace and the erosion mechanism, it is necessary to take the three processes of ore benefaction, sintering and blast furnace as a whole and study the migration path of chlorine elements, which can provide a theoretical basis for reducing the chlorine load of the blast furnace and its hazards to the blast furnace and auxiliary system. Taking a blast furnace of Jiuquan Iron and Steel (Group) Co., Ltd. (Jiuquan Steel) as the research object, the materials charged and produced in the three processes of ore benefaction, sintering and blast furnace were sampled, and the chlorine content of the samples was detected by ion chromatography. Through chlorine equilibrium calculation, it was found that most of the chlorine was brought in by the Heigou ore in the ore beneficiation process, most of the chlorine was brought in by the self-produced concentrate in the sintering process, and iron-containing burdens were the largest source of chlorine, followed by coke and pulverized coal in the blast furnace. In addition to the chlorine brought out with the blast furnace gas, the proportion of chlorine brought out by the rest of the bag ash is also high. Given the chlorine load of the blast furnace in Jiuquan Steel, the amount of chlorine entering the ore benefaction process, sintering process and blast furnace system should be reduced from the source, and the chlorine removal of dust ash should be carried out in the sintering process, and the circulation enrichment of chlorine in the blast furnace should be reduced, which could greatly reduce the hazards caused by chlorine to the blast furnace and its ancillary equipment.

关键词

氯元素 / 迁移行为 / 高炉 / 烧结 / 选矿

Key words

chlorine / migration behavior / blast furnace / sintering / ore benefaction

图表

引用本文

导出引用
蒋心泰, 鲁逢霖, 施煌禹, . 酒钢铁前系统氯元素迁移行为[J]. 钢铁, 2023, 58(6): 53-60 https://doi.org/10.13228/j.boyuan.issn0449-749x.20220800
JIANG Xintai, LU Fenglin, SHI Huangyu, et al. Migration behavior of chlorine elements in iron-making process of Jiuquan Iron and Steel (Group) Co., Ltd.[J]. Iron and Steel, 2023, 58(6): 53-60 https://doi.org/10.13228/j.boyuan.issn0449-749x.20220800

参考文献

[1] 王飞, 毛瑞, 许源, 等. 球团链箅机回转窑工艺中氯和硫元素迁移规律[J]. 钢铁研究学报, 2022, 34(4): 326. (WANG F, MAO R, XU Y, et al. Migration rule of chlorine and sulfur in grate-kiln process of pellet production[J]. Journal of Iron and Steel Research, 2022, 34(4): 326.)
[2] 张晓英, 李素芹, 雷海萍, 等. 钢铁工业循环水中氯离子脱除工艺技术探讨[J]. 钢铁, 2022, 57(3): 153. (ZHANG X Y, LI S Q, LEI H P, et al. Discussion on removal of chloride ion from circulating water in iron and steel industry[J]. Iron and Steel, 2022, 57(3): 153.)
[3] 张建良, 尉继勇, 刘征建, 等. 中国钢铁工业空气污染物排放现状及趋势[J]. 钢铁, 2021, 56(12): 1.(ZHANG J L, YU J Y, LIU Z J, et al. Current situation and trend of air pollutant emission in China′s steel industry[J]. Iron and Steel, 2021, 56(12): 1.)
[4] 张淑会, 兰臣臣, 吕庆, 等. 高炉渣排氯能力的试验[J]. 钢铁, 2016, 51(5): 17. (ZHANG S H, LAN C C, LÜ Q, et al. Experiments on dechlorination capacity of blast furnace slag[J]. Iron and Steel, 2016, 51(5): 17.)
[5] 兰臣臣, 张淑会, 武兵强, 等. 氯元素对高炉冶炼的影响分析及展望[J]. 钢铁研究学报, 2015, 27(10): 1. (LAN C C, ZHANG S H, WU B Q, et al. Effect analysis and prospect of chlorine in blast furnace[J]. Journal of Iron and Steel Research, 2015, 27(10): 1.)
[6] 傅元坤, 汤雪松. 高炉氯平衡及氯在煤气管网中的分布[J]. 安徽工业大学学报(自然科学版), 2012, 29(3): 198. (FU Y K, TANG X S. Chlorine balance of blast furnace and distribution of chlorine in gas pipe betwork[J]. Journal of Anhui University of Technology(Natural Science), 2012, 29(3): 198.)
[7] LIU X J, LÜ Q, ZHANG S H. Migration principle of chlorine in BF production[J]. Advanced Materials Research, 2012, 402: 107.
[8] 胡宾生, 贵永亮, 吕凯, 等. 唐钢高炉氯元素的平衡[J]. 钢铁研究学报, 2013, 25(1): 23. (HU B S, GUI Y L, LÜ K, et al. Chlorine balance in blast furnace of Tang Steel[J]. Journal of Iron and Steel Research, 2013, 25(1): 23.)
[9] 张建良, 王翠, 左海滨, 等. 高炉系统氯元素研究进展及未来展望[J]. 钢铁, 2015, 50(7): 1. (ZHANG J L, WANG C, ZUO H B, et al. Research progress and future prospect of chlorine in blast furnace system[J]. Iron and Steel, 2015, 50(7): 1.)
[10] WANG C, ZHANG J L, JIAO K X, et al. Influence of basicity and MgO/Al2O3 ratio on the viscosity of blast furnace slags containing chloride[J]. Metallurgical Research and Technology, 2017, 114(2): 205.
[11] WANG C, ZHANG J L, JIAO K X, et al. Gasification characteristics and kinetics of coke with chlorine addition[J]. Metallurgical and Materials Transactions B, 2017, 48(5):2428.
[12] 胡宾生, 余三友, 贵永亮, 等. 唐钢烧结工艺过程中氯元素平衡的研究[J]. 烧结球团, 2013, 38(3): 9. (HU B S, YU S Y, GUI Y L, et al. Study on chlorine balance in sintering process of Tang Steel[J]. Sintering and Pelletizing, 2013, 38(3): 9.)
[13] 兰臣臣, 张淑会, 吕庆, 等. 高炉内氯元素反应行为的热力学分析[J]. 钢铁钒钛, 2016, 37(4): 112. (LAN C C, ZHANG S H, LÜ Q, et al. Thermodynamic analysis of chlorine reaction behavior in blast furnace[J]. Iron Steel Vanadium Titanium, 2016, 37(4): 112.)
[14] 王瑞哲, 孙艳芹, 吕庆, 等. 钒钛矿还原粉化低氯抑制剂的研究[J]. 河北联合大学学报(自然科学版), 2013, 35(2): 4. (WANG R Z, SUN Y Q, LÜ Q, et al. Study on low chlorine to RDI of vanadium-titanium sinter[J]. Journal of Hebei United University(Natural Science), 2013, 35(2): 4.)
[15] 徐萌, 李增朴, 马泽军, 等. 迁钢2号高炉干法除尘系统氯腐蚀控制的研究[J]. 炼铁, 2009, 28(5): 36. (XU M, LI Z P, MA Z J, et al. Corrosion control research of Qiansteel No.2 blast furnace dry dedusting technology[J]. Ironmaking, 2009, 28(5):36.)
[16] 陈树军, 吕庆, 刘小杰, 等. 氯元素在高炉软熔滴落带分配规律[J]. 钢铁研究学报, 2017, 29(3): 175. (CHEN S J, LÜ Q, LIU X J, et al. Distribution rule of chlorine in soft melt droplet of blast furnace[J]. Journal of Iron and Steel Research, 2017, 29(3): 175.)
[17] 程正霖, 朱晓华, 李鹏飞. 高炉生产过程中氯的来源、迁移转化及影响[J]. 环境工程, 2021, 39(4): 86. (CHENG Z L, ZHU X H, LI P F. Source, migration, transformation and effect of chlorine in blast furnace production[J]. Environmental Engineering, 2021, 39(4): 86.)
[18] 王翠, 张建良, 左海滨, 等. 氯元素在高炉中的热力学行为[J]. 中国冶金, 2015, 25(11): 6. (WANG C, ZHANG J L, ZUO H B, et al. Thermodynamic behavior of chlorine in blast furnace[J]. China Metallurgy, 2015, 25(11): 6.)
[19] WANG C, ZHANG J L, LIU Z, et al. Effect of Chlorine on the viscosities and structures of CaO-SiO2-CaCl2 slags[J]. Metallurgical and Materials Transactions B, 2017, 48(1):328.
[20] WANG C, ZHANG J L, WANG G W, et al. Combustion characteristics and kinetics of anthracite with added chlorine[J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(7), 745.
[21] ZHANG J L, ZHANG X, HU Z W, et al. Effect of CaCl2 on RDI and RI of sinter[J]. Journal of Iron and Steel Research International, 2010, 17(11): 7.
[22] 韩秀丽, 王程, 伊凤永, 等. CaCl2对钒钛烧结矿矿相结构及RDI的影响机理[J]. 烧结球团, 2020, 45(4): 1. (HAN X L, WANG C, YI F Y, et al. The influence mechanism of CaCl2 on the phase structure and RDI of vanadium-titanium sinter[J]. Sintering and Pelletizing, 2020, 45(4): 1.)
[23] 李咸伟. 氯化物对烧结矿RDI影响的试验研究[J]. 宝钢技术, 1998(1): 21. (LI X W. Experimental study on the effect of chloride on RDI[J]. Baosteel Technology, 1998(1): 21.)
[24] 王再义, 王相力, 刘德军, 等. CaCl2对高炉内碱金属富集和焦炭热态性能的影响[J]. 炼铁, 2009, 28(3): 45. (WANG Z Y, WANG X L, LIU D J, et al. Effect of CaCl2 on alkali metal enrichment and coke thermal properties in blast furnace[J]. Ironmaking, 2009, 28(3): 45.)
[25] 杨华明, 邱冠周, 唐爱东. CaCl2对烧结矿RDI的影响[J]. 中南工业大学学报(自然科学版), 1998, 29(3): 28. (YANG H M, QIU G Z, TANG A D. Effect of CaCl2 on RDI of sinter[J]. Journal of Central South University of Technology(Natural Science), 1998, 29(3): 28.)
[26] 张艳允, 李玉银. 喷洒CaCl2溶液对烧结矿冶金性能影响的实验研究[J]. 钢铁研究, 2011, 39(1): 1. (ZHANG Y Y, LI Y Y. Experimental study on effect of CaCl2 solution spraying on metallurgical properties of sinter[J]. Research on Iron and Steel, 2011, 39(1): 1.)
[27] 杨杨, 周庭, 梁晓琳. 氯元素在烧结系统影响及应对措施[J]. 中国金属通报, 2022(3): 7. (YANG Y, ZHOU T, LIANG X L. The influence of chlorine in sintering system and its countermeasures[J]. China Metal Notification, 2022(3):7.)
[28] 刘艳敏, 辛渊, 李保良, 等. 氯元素对高炉煤气管道的腐蚀与预防[J]. 天津冶金, 2022(5): 8. (LIU Y M, XIN Y, LI B L, et al. Corrosion and prevention of chlorine on blast furnace gas pipeline[J]. Tianjin Metallurgy, 2022(5): 8.)

PDF(804 KB)

39

Accesses

0

Citation

Detail

段落导航
相关文章

/