冶炼钒钛矿高炉富氢非等温还原行为及合适富氢率的探讨

郄亚娜, 王新东, 李宇壮, 王艺帆, 张淑会, 陈树军

钢铁 ›› 2023, Vol. 58 ›› Issue (8) : 61-68.

PDF(3818 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月28日 星期一
PDF(3818 KB)
钢铁 ›› 2023, Vol. 58 ›› Issue (8) : 61-68. DOI: 10.13228/j.boyuan.issn0449-749x.20230016
原料与炼铁

冶炼钒钛矿高炉富氢非等温还原行为及合适富氢率的探讨

  • 郄亚娜1, 王新东2, 李宇壮1, 王艺帆1, 张淑会1, 陈树军3
作者信息 +

Non-isothermal reduction behavior and appropriate hydrogen enrichment rate of blast furnace with vanadium titanium ore

  • 郄亚娜1, 王新东2, 李宇壮1, 王艺帆1, 张淑会1, 陈树军3
Author information +
文章历史 +

摘要

高炉富氢是降低高炉能耗与碳排放重要途径,为确定高炉合适富氢率,研究了不同富氢率条件下钒钛矿的软熔滴落过程,并采用历程中断法分析了钒钛烧结矿、球团矿的非等温还原行为。研究结果表明,高炉富氢改善了钒钛矿还原条件,随煤气富氢率的增加,钒钛烧结矿、球团矿的还原度升高,尤其是高温条件下,煤气富氢率对还原的影响更为明显,初渣中FeO含量减少,初渣渣量降低,冶炼钒钛矿高炉富氢后软熔带位置下移,厚度减薄,尤其是透气性最差的熔融区间变窄,透气性增加;由于物理形貌和结构特征的不同,钒钛烧结矿与球团矿的还原速率随富氢率的增加表现出不同的变化趋势,富氢后钒钛烧结矿的还原速率在900~1 000 ℃达到最大值,而钒钛球团矿的还原速率随温度的增加呈增加趋势。高炉富氢恶化了钒钛矿非等温还原过程的粉化指标,适当减小炉身角可缓解富氢高炉块状带钒钛矿还原粉化现象。当煤气中富氢率以5%幅度增加时对钒钛矿非等温还原和软熔滴落性能的影响是不同的,富氢率由0增加到5%时的影响最大,其次是由5%增加到10%,富氢率超过10%时对钒钛烧矿的还原及软熔滴落行为影响较小,综合考虑还原气体富氢率对钒钛矿非温度还原、软熔滴落性能和软熔带分布的影响,冶炼钒钛矿高炉的富氢率应为10%左右。

Abstract

Hydrogen-rich metallurgy in blast furnace(BF) is an important way to reduce energy consumption and carbon emission. In order to determine the proper hydrogen enrichment rate of blast furnace, the influence of hydrogen enrichment rate on the process of softening and melting of vanadium titanium ore was studied, and the non-isothermal reduction behaviors of sinter and pellets with vanadium-titanium are analyzed by the process interruption method. The results showed that,the hydrogen-rich metallurgy in BF improves the reduction condition of vanadium titanium ore. With the increase of hydrogen enrichment rate, the reduction degrees of sinter and pellets with vanadium titanium increase, especially under the condition of high temperature, the effect of hydrogen enrichment rate of gas is more obvious. The FeO content and the amount of primary melting slag decrease with hydrogen enrichment in BF. The hydrogen-rich operation of BF with vanadium titanite ore will make the cohesive zone move down and the thickness thin, especially the melting zone with the worst permeability become narrowed, and the permeability of burden increases. Due to the different physical morphology and structural characteristics, the reduction rates of sinter and pellets with vanadium-titanium show different trends with the increase of hydrogen enrichment rate. After hydrogen enrichment, the reduction rate of sinter with vanadium-titanium reaches the maximum value at 900-1 000 ℃, while the reduction rate of pellets increases with the increase of temperature. The hydrogen-rich operation of BF worsens the pulverization index of vanadium titanite in non-isothermal reduction process, so properly decreasing the furnace body Angle can alleviate the pulverization of vanadium titanium ore in BF lumpy zone with hydrogen enrichment. When the hydrogen enrichment rate in gas increases by 5%, the influence on the non-isothermal reduction and soft-melting dripping of vanadium titanium ore is different. The effect is the greatest when the hydrogen enrichment rate increases from 0 to 5%, followed by 5% to 10%. When the hydrogen enrichment rate exceeds 10%, the effect on the reduction and soft-melting dripping behavior of vanadium titanium ore is small. After considering the effects of hydrogen enrichment rate on the non-temperature reduction of vanadium titanium ore, the dripping property of softening-melting and the distribution of cohesive zone, the optimal hydrogen enrichment rate can be concluded about 10% in BF with burden containing vanadium-titanium.

关键词

高炉富氢 / 非等温还原 / 软熔滴落 / 还原粉化 / 钒钛矿

Key words

hydrogen-rich BF / non-isothermal reduction / soft-melting dripping / reduction degradation / vanadium titanium ore

图表

引用本文

导出引用
郄亚娜, 王新东, 李宇壮, . 冶炼钒钛矿高炉富氢非等温还原行为及合适富氢率的探讨[J]. 钢铁, 2023, 58(8): 61-68 https://doi.org/10.13228/j.boyuan.issn0449-749x.20230016
QIE Yana, WANG Xindong, LI Yuzhuang, et al. Non-isothermal reduction behavior and appropriate hydrogen enrichment rate of blast furnace with vanadium titanium ore[J]. Iron and Steel, 2023, 58(8): 61-68 https://doi.org/10.13228/j.boyuan.issn0449-749x.20230016

参考文献

[1] 世界金属导报. 关于新形势下炼铁工业发展的认识[J/OL].[2020-11-17]. http://www.worldmetals.com.cn/viscms/search.jspx?q=%E6%97%A5%E6%9C%ACCOURSE 50&siteId=3.(World Metals Herald. Understanding of the development of ironmaking industry under the new situation[J/OL].[2020-11-17].http://www.worldmetals.com.cn/viscms/search.jspx?q=%E6%97%A5%E6%9C%ACCOURSE50&siteId=3.)
[2] 车彦民,曹莉霞,刘金哲.氢的大规模制备及在钢铁行业的应用和展望[J].中国冶金,2022,32(9):1.(CHE Y M,CAO L X,LIU J Z. Large scale hydrogen production and its application and prospect in iron and steel industry[J].China Metallurgy, 2022,32(9):1.)
[3] 潘聪超,庞建明.氢冶金技术的发展溯源与应用前景[J].中国冶金,2021,31(9):73.(PAN C C,PANG J M. Development trace and application prospect of hydrogen metallurgy technology[J].China Metallurgy, 2021,31(9):73.)
[4] 张建良. 氢冶金初探[M]. 北京:冶金工业出版社, 2021.(ZHANG J L. Primary Exploration of Hydrogen Metallurgy[M]. Beijing: Metallurgical Industry Press,2021.)
[5] 世界金属导报. 宝武富氢碳循环氧气高炉关键技术指标实现碳减排阶段性目标[J/OL]. [2022-11-29].http://www.worldmetals.com.cn/viscms/qiyedongtai0275/20221129/259972.html.(World Metals Herald. The phased target of carbon emission reduction of key technical indicators of Baowu oxygen BF with carbon cycle and hydrogen enrichment[J/OL].[2022-11-29].http://www.worldmetals.com.cn/viscms/qiyedongtai0275/20221129/259972.html.)
[6] QIE Y N,LAN C C, ZHANG S H. Energy conservation and CO2 abatement potential of a gas-injection blast furnace[J]. High Temperature Materials and Processes, 2020,39(1):96.
[7] LÜ Q,QIE Y N, LIU X J, et al. Effect of hydrogen addition on reduction behavior of iron oxides in gas-injection blast furnace[J]. Thermochimica Acta, 2017, 648:79.
[8] 沈峰满,姜鑫,魏国,等.富氢还原对烧结矿还原性及还原粉化的影响[J].中国冶金,2014,24(1):2.(SHEN F M,JIANG X,WEI G,et al.Effect of hydrogen-enriched gas on reducibility and reduction-disintegration of sinters[J].China Metallurgy, 2014,24(1):2.)
[9] XU J, WAMG N, CHEN M, et al. Comparative investigation on the reduction behavior of blast furnace dust particles during in-flight process in hydrogen-rich and carbon monoxide atmospheres[J]. Powder Technology, 2020,366:709.
[10] MEGHA J, JORGE G, PETRUS C. Increased use of natural gas in blast furnace ironmaking: Mass and energy balance calculations[J]. Metallurgical and Materials Transactions B, 2019, 50:1290.
[11] CUILIU Z, LISTOPADOV V, RUNSHENG X, et al. Blast furnace hydrogen-rich metallurgy-research on efficiency injection of natural gas and pulverized coal[J]. Fuel, 2022, 311:122412
[12] DESAI B, RAMNA R, SATHAYE J. Effect of hot reducing gas (HRG) injection on blast furnace operational parameters: Theoretical investigation[J]. Ironmaking and Steelmaking, 2008, 35(1): 43.
[13] 邵建男,兰臣臣,张淑会,等.高炉富氢冶炼后焦炭的性能演变研究现状及展望[J].中国冶金,2023,33(4):17.(SHAO J N,LAN C C,ZHANG S H,et al. Research status and prospect of coke property evolution after hydrogen-rich smelting in blast furnace[J].China Metallurgy, 2023,33(4):17.)
[14] 陈小龙,高立华.富氢还原对烧结矿低温还原粉化的影响[J].冶金能源,2022,41(4):27.(CHEN X L ,GAO L H.Effect of rich hydrogen reduction on low temperature reduction disintegration of sinters[J]. Energy for Metallurgical Industry,2022,41(4):27.)
[15] 郄亚娜. 喷煤气高炉冶炼特点及反应规律的研究[D]. 唐山:华北理工大学, 2018.(QIE Y N. Smelting Characteristic and Reaction Rules in Gas-injection Blast Furnace[D]. Tangshan:North China University of Science and Technology,2018.)
[16] LIU Q, ZHAO Y J, HUANG Y, et al. Pilot test of low-rank coal pyrolysis coupled with gasification to hydrogen-rich gas for direct reduced iron: Process modeling, simulation and thermodynamic analysis[J] Fuel, 2023, 331(1):125862.
[17] 梁之凯. 铁矿球团气基还原及其膨胀行为研究[D]. 长沙:中南大学, 2013.(LIANG Z K. Study on Gas-Based Reduction and Accompanying Swelling Behavior of Iron Ore Pellets[D]. Changsha:Central South University,2013.)
[18] QIE Y N, LÜ Q, LI J P, et al. Effect of hydrogen addition on reduction kinetics of iron oxides in gas-injection BF[J]. ISIJ International, 2017, 57(3):404.
[19] 李建,毛晓明,彭新,等. 微观性能对烧结矿低温还原粉化的影响[J].钢铁, 2018, 53(8):15.(LI J, MAO X M, PENG X, et al. Effect of micro-characteristics on reduaction index of sinter[J].Iron and Steel, 2018, 53(8):15.)
[20] 赵喆. 铁精粉配比对钒钛烧结矿矿相结构及冶金性能的影响[D]. 唐山: 华北理工大学, 2020.(ZHAO Z. Effect of Iron Concentrate Proportion on Phase Structure and Metallurgical Properties of Vanadium Titanium Sinter[D]. Tangshan:North China University of Science and Technology, 2020.)
[21] 王程. 钙钛矿对钒钛烧结矿质量影响[D]. 唐山: 华北理工大学, 2021.(WANG C. Effect of Perovskite on the Quality of Vanadium-Titanium Sinter[D]. Tangshan:North China University of Science and Technology, 2021.)
[22] 周凯. 钒钛炉料软熔性能及物相变化规律研究[D]. 重庆:重庆大学, 2020.(ZHOU K. Study on Softening-Melting Property and Phase Transformation of Vanadium Titanium Burden[D].Chongqing: Chongqing University,2020.)
[23] MATSUMURA M, HOSHI M, KAWAGUCHI T. Improvement of sinter softening property and reducibility by controlling chemical compositions[J]. ISIJ International,2005, 45(4):594.
[24] SUNAHARA K, NATSUI T, SHIZAWA K, et al. Effect of coke reactivity on sinter softening-melting property by simultaneous evaluation method of carbonaceous and ferrous burdens in blast furnace[J]. ISIJ International, 2011, 51(8):1322.
[25] 黄希秙. 钢铁冶金原理[M]. 北京:冶金工业出版社, 1990.(HUANG X H. Principle of Iron and Steel Metallurgy[M]. Beijing: Metallurgical Industry Press,1990.)
[26] 兰臣臣. 焦炭在富氢高炉内的多相反应机理[D]. 沈阳:东北大学, 2020.(LAN C C. Multiphase Reaction Mechanism of Coke in Hydrogen Rich Blast Furnace[D]. Shenyang:Northeastern University,2020.)
[27] HIGUCHI K, NAITO M, NAKANO M, et al. Optimization of chemical composition and microstructure of iron ore sinter for low-temperature drip of molten iron with high permeability[J]. ISIJ International, 2007, 44(12):2057.
[28] BAKKER T. Softening in the Blast Furnace Process[D]. Netherlands:Delft University of Technology, 1999.
[29] QIE Y N, LÜ Qing, LAN C C, et al. Effect of H2 addition on process of primary slag formation in cohesive zone[J]. Journal of Iron and Steel Research International, 2020, 27(2):132.
[30] SHIMODA T, KURITA K, IWANAGA Y. Softening property of iron ore and its influence on gas flow in blast furnace[J]. Transactions ISIJ, 1987, 27(10):780.
[31] QIE Y N, LÜ Q, LIU X J, et al. Effect of hydrogen addition on softening and melting reduction behavior of ferrous burden in gas-injection blast furnace[J]. Metallurgical and Materials Transactions B, 2018, 49B:2622.
[32] 郄亚娜, 靳亚涛, 康源, 等. 高炉富氢对钒钛矿软熔滴落性能的影响[J]. 钢铁, 2023, 58(5):31. (QIE Y N, JIN Y T, KANG Y, et al. Influence of hydrogen-rich on the softening and melting property of blast furnace burden with vanadium and titanium[J]. Iron and Steel, 2023, 58(5):31.)
[33] 孙昊延, 朱庆山, 李洪钟. 钒钛磁铁矿流态化直接还原技术现状与发展趋势[J]. 过程工程学报, 2018, 18(6):1147.(SUN H Y, ZHU Q S, LI H Z. The technical state and development trend of the direct reduction of titanomagnetite by fluidized bed[J]. The Chinese Journal of Process Engineering,2018, 18(6):1147.)
[34] 邓朝枢. 钒钛烧结矿在高炉内的还原相变[J]. 钢铁, 1985,20(12):46.(DENG C S. Phase transformation of V-Ti-bearing sinter during reduction in BF[J]. Iron and Steel,1985,20(12):46.)
[35] 宋国才, 苑天宇, 陈小武. 高炉冶炼钒钛烧结矿软熔滴落带物相组成研究[J]. 钢铁钒钛, 1996, 17(2):25.(SONG G C, YUAN T Y, CHEN X W. Study on phase composition of the cohesive dropping zone in BF during smelting V-bearing titaniferous magnetite sinter[J]. Iron Steel Vanadium Titanium, 1996, 17(2):25.)
[36] 包毅成,贾学庆,宋国才.钒钛烧结矿高炉冶炼软熔滴落带还原过程模拟研究[J].钢铁钒钛,1993, 14(2):1.(BAO Y C, JIA X Q, SONG G C. Simulation study on reduction process of soft melt drop zone in blast furnace smelting of vanadium titanium sinter[J]. Iron Steel Vanadium Titanium, 1993,14(2):1.)

基金

国家自然科学基金资助项目(52104328); 河北省重点研发计划资助项目(22374003D); 河北省自然科学基金资助项目(E2021209023)

PDF(3818 KB)

48

Accesses

0

Citation

Detail

段落导航
相关文章

/