唐钢新区高炉-转炉区段物质流温度解析

李帅兵, 韩伟刚, 马新光, 李建生, 徐政, 杨广庆

钢铁 ›› 2023, Vol. 58 ›› Issue (11) : 52-60.

PDF(2366 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月25日 星期五
PDF(2366 KB)
钢铁 ›› 2023, Vol. 58 ›› Issue (11) : 52-60. DOI: 10.13228/j.boyuan.issn0449-749x.20230083
冶金流程工程

唐钢新区高炉-转炉区段物质流温度解析

  • 李帅兵1, 韩伟刚1, 马新光2, 李建生2, 徐政2, 杨广庆1
作者信息 +

Temperature analysis of material flow in BF-BOF section of Tangsteel New Area

  • 李帅兵1, 韩伟刚1, 马新光2, 李建生2, 徐政2, 杨广庆1
Author information +
文章历史 +

摘要

为了研究影响唐钢新区高炉-转炉区段铁水温降及其波动性的原因,对唐钢新区高炉-转炉区段铁水罐运行过程进行解析,并统计分析了高炉出铁过程中和炼钢厂KR进站的铁水温度分布规律。通过对唐钢高炉-转炉区段铁水沟内和铁水罐内的铁水温度以及铁水罐空罐内衬温度进行现场实际测温,研究其温降过程及温降原因,为唐钢新区高炉-转炉区段铁水温降优化提供具体的理论指导。结果表明,铁水沟内的铁水温度在生产过程中的变化具有周期性,堵口后沟内残铁温度以0.8~0.9 ℃/min的速率降低,开口后在60 min内逐渐回升并稳定在1 520 ℃左右。高炉出铁过程中的铁水温降占高炉-转炉区段铁水总温降的主要部分,尾罐对高炉-转炉区段铁水温降具有重要影响,尾罐和非尾罐的平均铁水温度相差49 ℃。兑铁结束后的铁水罐空罐在前20 min温降幅度较大,罐龄后期的铁水罐内衬蓄热能力较罐龄前期略差,且内衬的上中下部因铁水侵蚀变得不均匀,相同空罐时间,罐龄后期铁水罐内衬温降幅度更大。唐钢新区应采用减小高炉出铁量波动、优化炉下配罐模式、尾罐及时转场处理、加强铁水罐保温、设置在线铁水罐清渣位等措施,减少高炉-转炉区段铁水温降及其波动。

Abstract

In order to study the reasons affecting the temperature drop and volatility of the hot metal in the BF-BOF section of Tangsteel New Area, the operation process of the hot metal ladles and the temperature distribution pattern of BF and KR station was analyzed. The temperature measurement of the hot metal in runners/ladles and the empty HML wall was carried out, so as to provide specific theoretical guidance for the optimization of the temperature drop of the hot metal in the BF-BOF section of Tangsteel New Area. The results show that the temperature of the hot metal in runners had a periodic fluctuation. It decreased at a temperature drop rate of 0.8-0.9 ℃/min during tapping hole blocked, and gradually increased within 60 min during the opening process and finally stabilized at about 1 520 ℃. The temperature drop of hot metal during the blast furnace tapping process accounts for the main part of the total temperature drop at the BF-BOF section. The ending ladles caused a larger temperature drop in the full ladles after the end of BF tapping, and the average temperature difference between ending ladles and normal ladles was 49 ℃. The temperature drop in the first 20 min of the empty HML was greater. The heat storage capacity of the HML lining in the late age was slightly worse than that in the early age, and the upper, middle and lower lining became uneven. With the same time, the temperature drop of the former was greater. It is recommended to reduce the fluctuation of blast furnace tapping, optimize the distribution mode under the furnace, timely transfer the ending ladles, strengthen the insulation of the hot metal ladles, and set the online slag cleaning position of the hot metal ladles to reduce the temperature drop and fluctuation of the hot metal in BF-BOF section.

关键词

高炉-转炉区段 / 铁水温度 / 铁水罐 / 尾罐 / 铁水沟

Key words

BF-BOF section / hot metal temperature / hot metal ladle / ending ladle / hot metal runner

图表

引用本文

导出引用
李帅兵, 韩伟刚, 马新光, . 唐钢新区高炉-转炉区段物质流温度解析[J]. 钢铁, 2023, 58(11): 52-60 https://doi.org/10.13228/j.boyuan.issn0449-749x.20230083
LI Shuaibing, HAN Weigang, MA Xinguang, et al. Temperature analysis of material flow in BF-BOF section of Tangsteel New Area[J]. Iron and Steel, 2023, 58(11): 52-60 https://doi.org/10.13228/j.boyuan.issn0449-749x.20230083

参考文献

[1] 张福明, 钱世崇, 殷瑞钰. 钢铁厂流程结构优化与高炉大型化[J]. 钢铁, 2012, 47(7): 1.(ZHANG F M, QIAN S C, YIN R Y. Blast furnace enlargement and optimization of manufacture process structure of steel plant[J]. Iron and Steel, 2012, 47(7): 1.)
[2] 殷瑞钰. 冶金流程集成理论与方法[M]. 北京:冶金工业出版社, 2013.(YIN R Y. Theory and Method of Metallurgical Process Integration[M]. Beijing:Metallurgical Industry Press,2013.)
[3] 徐大勇, 刘常鹏, 杨大正, 等. 铁水温度价值的分析和评价[J]. 冶金能源, 2007(3): 7.(XU D Y, LIU C P, YANG D Z, et al. Analysis and evaluation of preature value about molten iron[J]. Energy for Metallurgical Industry, 2007(3):7.)
[4] 王雨墨, 陶林, 郭皓宇, 等. 转炉铁水预处理脱磷的影响因素[J]. 钢铁, 2020, 55(9): 29.(WAN Y M, TAO L, GUO H Y, et al. Dephosphorization influence factors in converter hot metal pretreatment[J]. Iron and Steel, 2020, 55(9):29.)
[5] 李闯, 郭汉杰, 成国光. 铁水温度、炉渣碱度和初始硅含量对碳饱和铁水脱锰的影响[J]. 特殊钢, 2009, 30(5): 4.(LI C, GUO H J, CHENG G G. Influence of metal temperature, slag basicity and initial Si content on demanganization of carbon-saturated hot metal[J]. Special Steel, 2009, 30(5): 4.)
[6] KITAMURA S, KITAMURA T, SHIBATA K, et al. Effect of stirring energy, temperature and flux composition on hot metal dephosphorization kinetics[J]. ISIJ International, 1991, 31(11): 1322.
[7] 直樹菊池, 誠司鍋島, 秀次竹内, 等. 機械撹拌式溶銑脱硫速度に及ぼす溶銑温度,回転数の影響[J]. 鉄と鋼, 2004, 90(6): 322.
[8] 廖彬生, 候兴. 转炉入炉铁水温度低的原因分析及其对炼钢的影响[J]. 江西冶金, 2003(2): 4.(LIAO B S, HOU X. Analyse cause and affection of low temperature molten into converter for steel-making[J]. Jiangxi Metallurgy, 2003(2): 4.)
[9] 肖龙鑫, 李晶, 闫威, 等. 合理的转炉废钢比探析[J]. 有色金属科学与工程, 2019, 10(5): 46.(XIAO L X, LI J, YAN W, et al. Study on reasonable scrap ratio during converter steelmaking[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 46.)
[10] DÍAZ J, FERNÁNDEZ F J. The impact of hot metal temperature on CO2 emissions from basic oxygen converter[J]. Environmental Science and Pollution Research, 2020, 27(1):33.
[11] 杜涛, 蔡九菊, 李亚军, 等. 炼铁-炼钢界面温降与节能模式分析[J]. 钢铁, 2008, 43(12): 83.(DU T, CAI J J, LI Y J, et al. Analysis of hot metal temperature drop and energy-saving mode on techno-interface of BF-BOF route[J]. Iron and Steel, 2008, 43(12): 83.)
[12] 魏元, 王鹏, 张新义, 等. 大型高炉转炉铁钢界面铁水温降分析[J]. 鞍钢技术, 2011(5): 37.(WEI Y, WANG P, ZHANG X Y, et al. Analysis on temperature drop of hot metal for ironmaking/steelmaking techno-interface of BF-BOF route[J]. Angang Technology, 2011(5): 37.)
[13] 杨光, 徐安军, 贺东风. 高炉-转炉区段铁水运输温降综述[J]. 中国冶金, 2018, 28(4): 1.(YANG G, XU A J, HE D F. Review on temperature drop of hot metal from BF to BOF[J]. China Metallurgy, 2018, 28(4): 1.)
[14] 汪森辉, 李海峰, 张永杰, 等. 高炉-转炉铁钢界面铁水温降预测建模和分析[J]. 钢铁研究学报, 2019, 31(11): 947.(WANG S H, LI H F, ZHANG Y J, et al. Modelling and analysis of temperature drop prediction on techno-interface of BF-BOF route[J]. Journal of Iron and Steel Research, 2019, 31(11): 947.)
[15] 王新东. 以“绿色化、智能化、品牌化”为目标规划设计河钢唐钢新区[J]. 钢铁, 2021, 56(2): 12.(WANG X D. Planning and design of HBIS Group Tangsteel new district with goal of "Green, Intelligent and Brand"[J]. Iron and Steel, 2021, 56(2): 12.)
[16] 殷瑞钰. “流”、流程网络与耗散结构:关于流程制造型制造流程物理系统的认识[J]. 中国科学:技术科学, 2018, 48(2): 136.(YIN R Y. "Flow", flow network and dissipative structure: Understanding of the physical system of manufacturing process of process manufacturing type[J]. Scientia Sinica Technologica, 2018, 48(2): 136.)
[17] 殷瑞钰. 论钢厂制造过程中能量流行为和能量流网络的构建[J]. 钢铁, 2010, 45(4): 1.(YIN R Y. Comment on behavior of energy flow and construction of energy flow network for steel manufacturing process[J]. Iron and Steel, 2010, 45(4): 1.)
[18] 王新东, 田鹏, 张彦林, 等. 全智能无人化料场在河钢唐钢新区的工程实践[J]. 河北冶金, 2021(5): 36.(WANG X D, TIAN P, ZHANG Y L, et al. Engineering practice of fully intelligent unmanned stockyard in Tangsteel new area of HBIS[J]. Hebei Metallurgy, 2021(5): 36.)
[19] 王新东, 张弛, 孙宇佳, 等. 河钢唐钢新区绿色制造技术应用实践[J]. 环境工程, 2022, 40(7): 179.(WANG X D, ZHANG C, SUN Y J, et al. Application practice of green manufacturing technology in Tangsteel new district of HBIS Group[J]. Environmental Engineering, 2022, 40(7): 179.)
[20] 殷瑞钰. 冶金流程工程学[M]. 2版. 北京: 冶金工业出版社, 2009.(YIN R Y. Metallurgical Process Engineering[M]. 2nd Ed. Beijing: Metallurgical Industry Press, 2009.)
[21] 邱剑, 田乃媛. 典型流程区段炼铁炼钢界面的比较优势研究[J]. 北京科技大学学报, 2005, 27(6): 740.(QIU J,TIAN N Y. Relative superiority research on the ironmaking/steelmaking interface of the typical process section[J]. Journal of University of Science and Technology Beijing, 2005, 27 (6): 740.)
[22] 王卫东. 沙钢铁钢界面铁水包多功能化技术运行分析[J]. 中国冶金, 2012, 22(10): 8.(WANG W D. Operational results and evaluation of "hot metal ladle with function multiplication" in Shagang[J]. China Metallurgy, 2012, 22(10): 8.)
[23] 石鑫越, 韩伟刚, 郦秀萍, 等. 首钢京唐钢厂“一罐到底”模式运行实践分析[J]. 钢铁, 2018, 53(2): 97.(SHI X Y, HAN W G, LI X P, et al. "One ladle technology" operation practice analysis in Shougang Jingtang[J]. Iron and Steel, 2018, 53(2): 97.)
[24] 杨玻, 董荣华, 刘浏, 等. 重钢铁钢界面“一罐制”技术的研究与应用[J]. 中国冶金, 2013, 23(10): 17.(YANG B, DONG R H, LIU L, et al. Research and application of "One Ladle Systerm" technology on iron steel interface in CISC[J]. China Metallurgy, 2013, 23(10): 17.)
[25] 陈红, 方丽华, 孙小跃, 等. 昆钢新区“一罐到底”工艺方案选择分析[J]. 钢铁, 2013, 48(12): 85.(CHEN H,FANG L H, SUN X Y, et al. Analysis on scheme selecting for One Ladle from BF to BOF of KISC[J]. Iron and Steel, 2013, 48(12): 85.)
[26] 殷树春. 铁水运输“一罐到底”生产实践研究[J]. 山西冶金, 2018, 41(6): 117.(YIN S C. Production practice research for "One ladle to BOF" technology[J]. Shanxi Metallurgy, 2018, 41(6): 117.)
[27] 王新东, 李铁, 张弛, 等. 河钢唐钢新区数字化绿色智能工厂的设计与实施[J]. 河北冶金, 2021(7): 1.(WANG X D, LI T, ZHANG C, et al. Design and implementation of the digital intelligent factory of HBIS Group Tangsteel New District[J]. Hebei Metallurgy, 2021(7): 1.)
[28] 魏绿坤, 徐安军, 潘俊. 基于Flexsim的炼钢-连铸区段流程仿真与优化分析[J]. 中国冶金, 2023, 33(4): 56.(WEI L K, XU A J, PAN J. Simulation and optimization analysis of steelmaking and continuous casting process based on Flexsim[J]. China Metallurgy, 2023, 33(4): 56.)
[29] 韩伟刚, 郦秀萍, 刘建华, 等. 首钢京唐5 500 m3高炉出铁过程铁水温降规律[J]. 钢铁, 2017, 52(6): 13.(HAN W G, LI X P, LIU J H, et al. Temperature drop of hot metal during BF tapping in Shougang Jingtang[J]. Iron and Steel, 2017, 52(6): 13.)
[30] 李雪娇, 屈新鑫, 熊雅玲, 等. 浅谈铂铑热电偶测温准确性的影响因素[J]. 贵金属, 2018, 39(4): 74.(LI X J, QU X X, XIONG Y L, et al. Discussion on the influence factors for temperature measurement accuracy of Pt-Rh thermocouple[J]. Precious Metals, 2018, 39(4): 74.)
[31] 崔雨, 李鸿飞. 红外测温仪的原理与实际应用指南[J]. 自动化与仪器仪表, 2009(6): 103.(CUI Y, LI H F. The element and using guide of infrared thermometer[J]. Automation and Instrumentation, 2009(6): 103.)

基金

国家自然科学基金青年科学基金资助项目(51904108)

PDF(2366 KB)

61

Accesses

0

Citation

Detail

段落导航
相关文章

/