高炉炉缸炉底热应力模拟

王旭, 姚灏, 陈卉婷, 梁栋, 郭艳玲, 于要伟

钢铁 ›› 2023, Vol. 58 ›› Issue (12) : 23-30.

PDF(3910 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月29日 星期二
PDF(3910 KB)
钢铁 ›› 2023, Vol. 58 ›› Issue (12) : 23-30. DOI: 10.13228/j.boyuan.issn0449-749x.20230115
原料与炼铁

高炉炉缸炉底热应力模拟

  • 王旭1,2, 姚灏1,2, 陈卉婷1,2, 梁栋3, 郭艳玲1,2, 于要伟1,2
作者信息 +

Simulation of thermal stress at hearth and bottom of a blast furnace

  • 王旭1,2, 姚灏1,2, 陈卉婷1,2, 梁栋3, 郭艳玲1,2, 于要伟1,2
Author information +
文章历史 +

摘要

钢铁行业作为中国的支柱产业之一,它提供了其他行业发展的基础原材料。高炉是中国钢铁生产的主要设备,随着其技术水平的提升,中国高炉正朝着大型化、智能化和长寿方向不断推进,但是在此过程中,高炉也面临着许多问题,其中炉体上涨就是一个高炉大型化过程中普遍存在的现象。引起炉体上涨原因有多种,而炉缸炉底热应力是未有明确结论且颇为重要的一种。为了研究炉缸炉底热应力对高炉炉体上涨的影响,以某钢厂3号3 200 m3高炉为研究对象,建立三维炉缸炉底计算模型,运用OpenFOAM进行数值仿真计算,得到其稳态温度场分布,之后将该分布与实际热电偶所测数据进行对比,选择两者最为相近的温度场结果设定为瞬态模拟的温度初始条件,并在此基础上求解得到瞬态模拟的温度场和热应力场分布。计算结果表明,1 423 K和1 143 K等温线均处于陶瓷杯砌体内,这说明在该区域易形成渣铁保护层且避免了炭砖脆化的发生;炉缸炉底的等效热应力值为1.354×106~7.104×108 Pa,尤其炉壳部分等效热应力值最大,在炉缸与炉底的交界处、不同材质的交界处和炉缸侧壁几何结构的转角处,均存在应力集中现象,在生产过程中,这些区域会首先被破坏,从而加剧整个炉衬的进一步侵蚀;由热应力造成的炉体上涨量为49.684 mm。

Abstract

As one of the pillar industries in China, the steel industry provides the basic raw materials for the development of other industries. Blast furnaces (BFs) are the main equipment for steel production in China. With the improvement of their technological level, blast furnaces in China are constantly advancing towards large-scale, intelligent, and long service life. However, in this process, BFs also face many problems, among which the rise of BF is a common phenomenon in the process of large-scale BFs. There are various reasons for the rise of the BF, and the thermal stress at the hearth and bottom of the BF is an important and unclear one. In order to study the impact of thermal stress on the rise of the BF body, a three-dimensional calculation model of the hearth and bottom was established with Laigang No.3 3 200 m3 BF as the research object, and uses OpenFOAM for numerical simulation to obtain its steady-state temperature field distribution. Then, the distribution is compared with the data measured by actual thermocouples, and the temperature field result that is closest to the two is selected as the initial temperature condition for transient simulation, and on this basis, the temperature field and thermal stress field distribution of the transient simulation are solved. The calculation results show that the 1 423 K and 1 143 K isotherms are both located inside the ceramic cup masonry, indicating that a slag iron protective layer is easily formed in this area and the occurrence of carbon brick embrittlement is avoided. The equivalent thermal stress value of the furnace hearth and bottom ranges from 1.354×106 Pa to 7.104×108 Pa, especially in the furnace shell part, where the maximum equivalent thermal stress value occurs. Stress concentration occurs at the interface between the furnace hearth and bottom, at the interface of different materials, and the corner of the geometric structure of the furnace hearth sidewall. During the production process, these areas will be first damaged, thereby exacerbating further erosion of the entire furnace lining; The rise of BF caused by thermal stress is 49.684 mm.

关键词

炉体上涨 / 炉缸炉底 / OpenFOAM / 数值仿真 / 温度场 / 热应力场

Key words

furnace body rise / hearth and bottom / OpenFOAM / numerical simulation / temperature field / thermal stress field

图表

引用本文

导出引用
王旭, 姚灏, 陈卉婷, . 高炉炉缸炉底热应力模拟[J]. 钢铁, 2023, 58(12): 23-30 https://doi.org/10.13228/j.boyuan.issn0449-749x.20230115
WANG Xu, YAO Hao, CHEN Huiting, et al. Simulation of thermal stress at hearth and bottom of a blast furnace[J]. Iron and Steel, 2023, 58(12): 23-30 https://doi.org/10.13228/j.boyuan.issn0449-749x.20230115

参考文献

[1] 卢维强, 张俊杰, 段国建, 等. 解决中天钢铁高炉炉壳上涨实践[J]. 钢铁, 2020, 55(2): 42. (LU W Q, ZHANG J J, DUAN G J,et al. Practice on solving problem of blast furnace shell rising in Zenith Steel Group Co., Ltd.[J]. Iron and Steel,2020,55(2): 42.)
[2] 张福明. 中国高炉炼铁技术装备发展成就与展望[J]. 钢铁, 2019, 54(11): 1. (ZHANG F M. Prospect and development achievements of blast furnace ironmaking technologies and equipments in China[J]. Iron and Steel,2019,54(11): 1.)
[3] 王国栋, 刘振宇, 张殿华, 等. 材料科学技术转型发展与钢铁创新基础设施的建设[J]. 钢铁研究学报, 2021, 33(10): 1003. (WANG G D,LIU Z Y,ZHANG D H,et al. Transformation and development of materials science and technology and construction of steel innovation infrastructure[J]. Journal of Iron and Steel Research,2021,33(10): 1003.)
[4] 张福明. 炼铁系统低碳技术发展前景与途径[J]. 钢铁, 2022, 57(9): 11. (ZHANG F M. Development prospect and approach of low-carbon technology in ironmaking system[J]. Iron and Steel,2022,57(9): 11.)
[5] 焦克新, 张建良, 刘征建, 等. 关于高炉炉缸长寿的关键问题解析[J]. 钢铁, 2020, 55(8): 193. (JIAO K X, ZHANG J L, LIU Z J,et al. Analysis of key issues on longevity of blast furnace hearth[J]. Iron and Steel,2020,55(8): 193.)
[6] 张福明. 低碳高效高炉的设计研究[J]. 中国冶金, 2021, 31(11): 1. (ZHANG F M. Research and design on low-carbon and high-efficiency blast furnace[J]. China Metallurgy,2021,31(11): 1.)
[7] 上官方钦, 刘正东, 殷瑞钰. 钢铁行业“碳达峰”“碳中和”实施路径研究[J]. 中国冶金, 2021, 31(9): 15. (SHANGGUAN F Q,LIU Z D,YIN R Y. Research on the implementation path of "carbon peak" and "carbon neutralization" in the steel industry[J]. China Metallurgy,2021,31(9): 15.)
[8] 刘然, 赵伟光, 刘颂, 等. 高炉冶炼智能化的发展与探讨[J]. 钢铁, 2023, 58(5): 1. (LIU R, ZHAO W G, LIU S,et al. Development and discussion of intelligent blast furnace smelting[J]. Iron and Steel, 2023, 58(5): 1.)
[9] 刘然, 张智峰, 刘小杰, 等. 低碳绿色炼铁技术发展动态及展望[J]. 钢铁, 2022, 57(5): 1.(LIU R, ZHANG Z F, LIU X J,et al. Development trend and prospect of low-carbon green ironmaking technology[J]. Iron and Steel, 2022, 57(5): 1.)
[10] 仇国,丁时明,凌志宏. 韶钢6号高炉炉体上涨原因分析及处理[C]//2008年中小高炉炼铁学术年会论文集. 青岛:中国金属学会炼铁分会,2008:238.(QIU G, DING S M, LING Z H. Cause analysis and treatment of No. 6 blast furnace body rise in Shaogang[C]//Proceedings of the 2008 annual meeting small and medium Blast-Furnace ironmaking symposium. Qingdao: Ironmaking Branch of the Chinese Society for Metals , 2008: 238.)
[11] 雷鸣, 刘建波, 杜屏, 等. 沙钢5 800 m3高炉炉体上涨的原因分析[J]. 炼铁, 2017, 36(2): 41. (LEI M, LIU J B,DU P, et al. Analysis on the rise of 5 800 m3 blast furnace in Shagang[J].Ironmaking, 2017, 36(2): 41.)
[12] 潘钊彬. 某钢厂4 000 m3高炉炉底封板上翘的原因及处理[J]. 炼铁, 2021, 40(2): 18. (PAN S B. Causes of upward warping of a steel plant 4 000 m3 BF base plate[J].Ironmaking, 2021, 40(2): 18.)
[13] 俞晓林. 杭钢1号高炉炉体上涨的原因及对策[J]. 炼铁, 2015, 34(4): 41. (YU X L. Reasons and countermeasures for the rise of Hangang No.1 blast furnace[J].Ironmaking, 2015, 34(4): 41.)
[14] 李洋龙,程树森,王颖生. 高炉炉底密封板上翘机理及预防措施[J]. 钢铁, 2014, 49(12): 18. (LI Y L, CHENG S S, WANG Y S. Mechanism and preventive measures of upturned blast furnace bottom sealing plate[J]. Iron and Steel,2014, 49(12): 18.)
[15] 肖志新, 李红, 卢正东, 等. 武钢3 200 m3高炉炉身中下部冷却壁损坏机理探析[J]. 炼铁, 2021, 40(5): 6. (XIAO Z X, LI H, LU Z D, et al. Damage mechanism of cooling wall in middle and lower part of 3 200 m3 BF body of Wuhan Iron and Steel Co., Ltd.[J]. Ironmaking, 2021, 40(5): 6.)
[16] 张雪松, 张勇, 孙健, 等. 高炉炉缸破损调研分析[J]. 中国冶金, 2021, 31(11): 9.(ZHANG X S, ZHANG Y, SUN J,et al. Investigation and analysis of blast furnace hearth damage[J]. China Metallurgy, 2021, 31(11): 9.)
[17] 赵奇强. 高炉上涨的原因及应对措施[J]. 炼铁, 2021, 40(1): 41. (ZHAO Q Q. Analysis and solutions of blast furnace rising[J].Ironmaking, 2021, 40(1): 41.)
[18] 姚慎, 张朝晖, 邢相栋, 等. 1 800 m3高炉炉缸炭砖侵蚀调查及机制分析[J]. 钢铁研究学报, 2021, 33(5): 8.(YAO S, ZHANG Z H, XING X D, et al. Investigation and mechanism analysis of 1 800 m3 blast furnace cylinder carbon brick erosion[J]. Journal of Iron and Steel Research, 2021, 33(5):8.)
[19] 肖志新, 李向伟, 陈绪亨, 等. 武钢1号高炉炉缸破损调查及炭砖侵蚀机理[J]. 中国冶金, 2023, 33(4): 87. (XIAO Z X, LI X W, CHEN X H, et al. Damage investigation of WISCO No.1 blast furnace hearth and mechanism of carbon brick erosion[J]. China Metallurgy, 2023, 33(4): 87.)
[20] 王光伟, 胡德顺, 王渐灵. 朝阳钢铁高炉有害元素分析及控制[J]. 鞍钢技术, 2018(4): 5. (WANG G W, HU D S, WANG J L. Analysis and control of harmful elements in blast furnace of Chaoyang Iron and Steel[J]. Angang Technology, 2018(4): 5.)
[21] 柏凌, 张建良, 郭豪, 等. 高炉内碱金属的富集循环[J]. 钢铁研究学报, 2008, 20(9): 5. (BO L, ZHANG J L, GUO H, et al. Circulation and enrichment of alkali metal in blast furnace[J]. Journal of Iron and Steel Research, 2008, 20(9): 5.)
[22] 王涛, 汪勤峰, 王亚力, 等. 昆钢2 000 m3高炉炉缸炉底破损情况调查[J]. 钢铁研究, 2015, 43(6): 17. (WANG T, WANG Q F, WANG Y L, et al. Damage survey for hearth bottom of 2 000 m3 blast furnace in KISC[J]. Research on Iron and Steel, 2015, 43(6): 17.)
[23] YAO H, CHEN H, GE Y, et al. Numerical analysis on erosion and optimization of a blast furnace main trough[J]. Materials, 2021, 14(17): 4851.
[24] GE Y, LI M, WEI H, et al. Numerical analysis on velocity and temperature of the fluid in a blast furnace main trough[J]. Processes, 2020, 8(2): 249.
[25] 石琳. 高炉炉缸壁三维简化为二维的数值模拟建模[J]. 钢铁研究学报, 2011, 23(2): 21. (SHI L. Modelling study of three-dimensional simplified as two-dimensional numerical simulation for blast furnace hearth[J]. Journal of Iron and Steel Research, 2011,23(2): 21.)
[26] LIU Q, ZHANG P, CHENG S, et al. Heat transfer and thermo-elastic analysis of copper steel composite stave[J]. International Journal of Heat and Mass Transfer, 2016, 103(12): 341.
[27] WANG L, CHEN L, ZHAO L, et al. Thermofluid-solid coupling numerical simulation model of blast furnace hearth protection measures[J]. IEEE Access, 2022, 10: 65080.
[28] JIAO K X, ZHANG J L, LIU Z J, et al. Formation mechanism of the graphite-rich protective layer in blast furnace hearths[J]. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(1): 16.
[29] JIAO K X, ZHANG J L, LIU Z J, et al. Analysis of blast furnace hearth sidewall erosion and protective layer formation[J]. ISIJ International, 2016, 56(11): 1956.
[30] 郑俊平, 卢正东, 李承志, 等. 不同冷却壁与炭砖组合结构高炉炉缸的温度场分布[J]. 武汉科技大学学报, 2021,44(2):93. (ZHENG J P, LU Z D, LI C Z, et al. Temperature field distribution of blast furnace cylinders with different cooling walls and carbon bricks[J]. Journal of Wuhan University of Science and Technology, 2021,44(2):93.)
[31] 贾利军, 于国华, 张向国, 等. 莱钢3号高炉炉缸炉底温度场和应力场模拟[J]. 山东冶金, 2009, 31(5): 110. (JIA L J, YU G H, ZHANG X G, et al. Simulation of temperature field and stress field at the bottom of the hearth of No. 3 BF in Laigang[J]. Shandong Metallurgy, 2009, 31(5): 110.)
[32] 郑玉峰,汪琦,车玉满. 高炉炉缸炉底温度场和应力场模拟分析[J]. 辽宁科技大学学报, 2015, 38(4): 253. (ZHENG Y F, WANG Q, JU Y M. Simulation analysis of temperature field and stress field at the bottom of blast furnace[J]. Journal of University of Science and Technology Liaoning, 2015, 38(4): 253.)

基金

上海高校特聘教授(东方学者)资助项目(TP2015039)

PDF(3910 KB)

Accesses

Citation

Detail

段落导航
相关文章

/