在高钛钢的生产过程中,由于钢中的钛与氮容易生成TiN夹杂物,并部分在结晶器内钢渣界面处聚集,这容易在钢液面低温区诱发“结鱼”的形成而导致高钛钢难以顺利连铸。针对高钛钢连铸“结鱼”产生的问题,采用数值模拟的方法,讨论了不同电磁搅拌强度、拉速和过热度等连铸参数对钢液面温度的影响,并对保护渣的碱度进行了优化,以通过提高钢液面温度来降低结晶器内“结鱼”的形成。通过建立的数学模型模拟发现,在浇铸拉速为0.85 m/s和1.05 m/s时,在结晶器内施加电磁搅拌均能引起钢液面温度的升高,且当搅拌电流为200 A时钢液面的温度最高;在电磁搅拌强度一定时,提高拉速和浇铸过热度均能提高结晶内钢液面的温度,并能减小结晶器角部低温区域的大小;现场试验发现,除拉速外,在其他连铸参数一定时,浇铸过热度由25 K提高到60 K后,连铸结晶器内未发现“结鱼”物的形成,且连铸坯表面的夹渣缺陷明显降低;将连铸保护渣碱度由0.60提高到0.88后,保护渣的结晶性能增强,控制传热能力改善,在高过热度浇铸过程中结晶器内液渣层的厚度由6 mm增加到为8 mm,这说明钢液面的温度升高,但该保护渣在低过热度浇铸(40 K)时也未发现“结鱼”的发生。因此,高钛钢连铸过程中的“结鱼”形成受钢液面的温度的影响,通过提高浇铸过热度和改善连铸保护渣控制传热的能力均能控制结晶器内“结鱼”的形成,优化渣可用于高钛钢的低过热度浇铸生产,为改善高钛钢的可浇性提供理论指导。
Abstract
During the production of the high-Ti steel, TiN inclusions formed under the reaction of the tatinium and nitrogen in the liquid steel, and aggregated near the steel-slag interface, which easily resulted in the formation of the "floater" on the steel-slag interface at the low-temperature zone and then the troubled continuous casting. The numerical simulation was established and used to solve the problem of the "floater" formation in the continuous casting mold during the casting of high-Ti steel. In order to reduce the formation of "floater" in the mold by increasing the temperature of the steel on the surface, the influence of the current by the electromagnetic stirring, casting speed and casting superheat on temperature of the steel on the surface was discussed, and the adjustment of the basicity of the mold slag was conducted. Through mathematical simulation, it is found that the temperature of the steel on the surface can be raised by the application of the electromagnetic stirring equipment in the mold with the casting speed of 0.85 m/s and 1.05 m/s, and the temperature is the highest with the stirring current of 200 A. With the current of the electromagnetic stirring constant, the increase of the casting speed and casting superheat can result in the increase of the steel temperature on the surface and the decrease of the size of the low temperature zone at the corner of the mold. Through the trial in the steel plant, it is found that with the casting superheat increasing from 25 K to 60 K, the formation of "floater" did not occur in the mold, and the slag-entrapment defects on the surface of continuous casting billet were significantly reduced when the continuous casting parameters except the casting speed were constant. With the basicity of continuous casting mold slag increasing from 0.60 to 0.88, the ability of crystallization and the heat-transfer control increased, and during the trial in the steel plant the thickness of liquid slag increased from 6 mm to 8 mm, which indicates that the temperature of liquid steel on the surface increased. Besides, the "floater" also did not occur with the application of the optimized slag during the low-superheat casting (40 K). Hence, the formation of "floater" in the continuous casting process of high-titanium steel was affected by the temperature of the liquid steel at the surface, and the formation of "floater" in the mold could be reduced by increasing the casting superheat and improving the control ability of the heat transfer of the continuous casting slag. The optimized slag could be used for the casting of high-titanium steel with low superheat, and would provide theoretical guidance for improving the casting ability of high-itanium steel.
关键词
高钛钢 /
连铸结晶器 /
结鱼物 /
钢液面温度 /
数值模拟
{{custom_keyword}} /
Key words
high-Ti steel /
continuous casting mold /
floater /
steel temperature on the surface /
numerical simulation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 袁海军. 关于轴承钢中TiN夹杂物的控制分析[J]. 冶金与材料, 2021, 41(6): 179. (YUAN H J. Control analysis of TiN inclusions in bearing steel[J]. Metallurgy and Materials, 2021, 41(6): 179.)
[2] 黄日康,张立峰,姜仁波,等. 超低碳铝脱氧钢连铸过程钢中非金属夹杂物的演变[J]. 炼钢, 2020, 36(6): 39. (HUANG R K, ZHANG L F, JIANG R B, et al. Evolution of inclusions in ultra-low carbon Al-killed steel during continuous casting[J]. Steelmaking, 2020, 36(6): 39.)
[3] 张静,马宏博,张继,等. 钇含量对铝脱氧含钛不锈钢中夹杂物的影响[J]. 钢铁, 2022, 57(9): 82. (ZHANG J, MA H B, ZHANG J, et al. Effect of yttrium content on inclusions in Al-killed titanium-bearing stainless steel[J]. Iron and Steel, 2022, 57(9): 82.)
[4] 杨辉, 陈根保, 戴伟, 等. 改善321含钛钢水口堵塞及结晶器“结鱼”现象的工艺实践[J]. 云南冶金, 2014, 43(6): 50 (YANG H,CHEN G B,DAI W,et al. The improvement process practice on nozzle clogging of 321 Ti-bearing steel and "floater" phenomenon of crystallizer[J]. Yunnan Metallurgy,2014,43(6):50.)
[5] 郑宏光. 含钛不锈钢连铸水口结瘤和结晶器“结鱼”[J]. 宝钢技术, 2008(1): 50. (ZHENG H G. Clogging of Ti-bearing stainless steel and floater in mould[J]. Baosteel Technology,2008(1): 50.)
[6] 郑宏光, 陈伟庆, 陈宏, 等. 钛稳定化321不锈钢连铸结晶器“结鱼”的研究[J]. 特殊钢, 2004(4): 50. (ZHENG H G,CHEN W Q,CHEN H,et al. A study on floater in mould during concasting Ti stabilized stainless steel 321[J]. Special Steel,2004(4):50.)
[7] 王学友,王云波,王时松,等. 高钛钢连铸结晶器内“结鱼”的形成[J]. 炼钢, 2023, 39(1): 75. (WANG X Y, WANG Y B, WANG S S, et al. Study on floater formation in continuous casting mold of high-titanium steel[J]. Steelmaking, 2023, 39(1): 75.)
[8] 王启明,成国光. 含Ti不锈钢冶金工艺进展[J]. 工程科学学报, 2021, 43(11): 1447. (WANG Q M, CHENG G G. Metallurgy development of Ti-stabilized stainless steel[J]. Chinese Journal of Engineering, 2021, 43(11): 1447.)
[9] MUKONGO T, Effect of Titanium Pick-up on Mould Flux Viscosity in Continuous Casting of Titanium-stabilised Stainless Steel[D]. Hatfield:University of Pretoria, 2006.
[10] NUNNINGTON R C, SUTCLIFFE N. The steelmaking and casting of Ti stabilized stainless steels in 59th Electric Furnace Conference[C]//19th Process Technology Conference. Phoenix: [s.n.], 2001: 361.
[11] 陈卓. 高钛合金钢连铸保护渣基础研究及应用[D]. 重庆:重庆大学, 2019. (CHEN Z. Theoretical Research and Application of Continuous Casting Mold Fluxes for High Ti-bearing Alloy Steel[D]. Chongqing:Chongqing:Chongqing University,2019.)
[12] 王杏娟, 靳贺斌, 朱立光, 等. 钢中钛含量对连铸结晶器内渣金反应的影响[J]. 钢铁, 2020, 55(12): 46. (WANG X J, JIN H B, ZHU L G, et al. Effect of titanium content in steel on slag-metal reaction in continuous casting mold[J]. Iron and Steel,2020, 55(12):46.)
[13] 陈兴润, 马国财, 魏维岗, 等. 高硅含钛奥氏体不锈钢“结晶器结鱼”分析及改进[J]. 炼钢, 2023, 39(2): 49. (CHEN X R, MA G C, WEI W G, et al. Analysis and improve of the floater in mould of high silicon titanium stabilized austenitic stainless steel[J]. Steelmaking,2023, 39(2):49.)
[14] 程鸣飞,王敏,姚骋,等. GCr15钢大方坯结晶器电磁搅拌工艺参数优化研究[J]. 钢铁研究学报, 2023, 35(1): 60. (CHENG M F, WANG M, YAO C, et al. Research on optimization of electromagnetic stirring process parameters of GCr15 steel bloom mold[J]. Journal of Iron and Steel Research,2023, 35(1): 60.)
[15] 杨宇威,苏志坚,陈进,等. 复合磁场作用下板坯结晶器内流场与温度场的数值模拟[J]. 材料与冶金学报, 2021, 20(3): 185. (YANG Y W, SU Z J, CHEN J, et al. Numerical simulation of fluid flow and temperature field of slab under composite magnetic field[J]. Journal of Materials and Metallurgy, 2021, 20(3): 185.)
[16] 冯鑫,姚稳,黎江玲. BaO对CaO-Al2O3基保护渣熔化温度、结晶及微观结构的影响[J]. 连铸, 2021(2): 38. (FENG X, YAO W, LI J L. Effect of BaO on melting temperature, crystallization and structure of CaO-Al2O3 based mold flux[J]. Continuous Casting,2021(2):116.)
[17] 张江浩,亓杰,刘承军,等. Li2O对CaO-Al2O3基保护渣结晶性能的影响[J]. 钢铁研究学报, 2022, 34(11): 1211. (ZHANG J H, QI J, LIU C J, et al. Effect of Li2O on crystallization properties of CaO-Al2O3based mold fluxes[J]. Journal of Iron and Steel Research, 2022, 34(11): 1211.)
[18] 潘伟杰,李民,朱礼龙,等. Na2O对超高碱度连铸保护渣性能的影响[J]. 钢铁, 2022, 57(1): 93. (PAN W J, LI M, ZHU L L, et al. Effect of Na2O on properties of ultra-high basicity continuous casting mold fluxes[J]. Iron and Steel, 2022, 57(1): 93.)
[19] 翟俊,李欢,陈法涛,等. 保护渣对430不锈钢铸坯边部凹陷缺陷的影响[J]. 中国冶金, 2022, 32(5): 102. (ZHAI J, LI H, CHEN F T, et al. Effect of mold flux on edge depression defects of 430 stainless steel billet[J]. China Metallurgy, 2022, 32(5): 102.)
[20] 靳贺斌,吉俊德,王时松,等. 钢渣反应对高钛钢保护渣物化特性的影响[J]. 连铸, 2021(12): 59. (JIN H B, JI J D, WANG S S, et al. Effect of steel-slag reaction on physicochemical properties of mold fluxes of high-titanium steel[J]. Continuous Casting, 2021(12): 59.)
[21] 翟冰钰,王万林,张磊. 高拉速条件下中碳钢连铸用保护渣的性能研究[J]. 炼钢, 2020, 36(1): 50. (ZHAI B J, WANG W L, ZHANG L. Study on the properties of mold fluxes for the high speed casting of medium carbon steel[J]. Steelmaking, 2020, 36(1): 50.)
[22] 袁志鹏,朱立光,韩毅华,等. 碱度对高速薄板坯保护渣结晶性能的影响[J]. 中国冶金, 2023, 33(1): 47. (YUAN Z P, ZHU L G, HAN Y H, et al. Effect of basicity on crystallinity of high speed thin slab mold flux[J]. China Metallurgy, 2023, 33(1): 47.)
[23] 何宇明,何生平. 结晶器保护渣的润滑与传热控制功能剖析[J]. 连铸, 2021(4): 2. (HE Y M, HE S P. Analysis of lubrication and heat transfer function of mold flux[J]. Continuous Casting, 2021(4): 2.)
[24] WANG Q, ZHANG L. Influence of FC-mold on the full solidification of continuous casting slab[J]. Journal of the Minerals, 2016, 68(8): 2170.
[25] MAURYA A, JHA P K. Influence of electromagnetic stirrer position on fluid flow and solidification in continuous casting mold[J]. Applied Mathematical Modelling, 2017(48): 48.
[26] SUN H, ZHANG J. Study on the macrosegregation behavior for the bloom continuous casting: Model development and validation[J]. Metallurgical and Materials Transaction B, 2014, 45(3): 1133.
[27] 张静,杨龙,吴会平. 电磁搅拌作用下水口深度对液面波动的影响[J]. 钢铁, 2016, 51(3): 32. (ZHANG J,YANG L,WU H P. Influence of nozzle submerged depth on fluctuation of liquid level with electromagnetic stirring[J]. Iron and Steel,2016,51(3):32.)[28] 张静, 马靓, 吴会平. 水口结构对连铸中低碳钢流场和温度场的影响[J]. 钢铁, 2019, 54(8): 116. (ZHANG J,MA L,WU H P. Effect of nozzle structure on flow field and temperature field of medium low carbon steel in continuous casting[J]. Iron and Steel,2019,54(8):116.)
[29] 李民, 包晶钢用超高碱度保护渣性能与微观结构的研究[D]. 重庆: 重庆大学,2021. (LI M. Study on Properties and Microstructure of Ultrahigh-basicity Mold Fluxes for Peritectic Steel[D]. Chongqing: Chongqing University,2021.)
[30] 王杏娟, 樊亚鹏, 朱立光, 等. 碱度对连铸保护渣结晶率的影响[J]. 特殊钢, 2017, 38(2): 6. (WANG X J,FAN Y P,ZHU L G,et al. Influence of basicity on crystallization rate of mold flux for continuous casting[J]. Special Steel,2017,38(2):6.)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(52274317, 52074054, 52004045)
{{custom_fund}}