近年来,在中国“碳达峰”“碳中和”战略背景下,低碳高炉炼铁已成为中国低碳冶金技术发展的重要方向。在高炉炼铁工序,由于大量使用化石燃料及炉顶煤气利用率低,导致CO2排放量过多。为降低高炉炼铁的碳排放,提出富氢碳循环氧气高炉新工艺。以碳循环氧气高炉为研究对象,通过数值模拟与实验室试验相结合的方式,对高炉内软熔带上部含铁炉料的还原行为和焦炭气化行为进行了研究。通过SEM-EDS对烧结矿和球团矿的还原程度及渣铁分离现象加以分析,同时采用矿相显微镜对焦炭气化后的微观形貌进行表征。通过数值模拟和实验室试验得到的高炉内含铁炉料还原度变化规律基本一致,验证了数值模拟与实验室试验相结合方法的可行性。研究表明,在高炉的同一竖直方向上,随着位置的降低,含铁炉料的还原度和金属化率不断升高,焦炭的气化率不断上升。在高炉中心位置软熔带上方,含铁炉料的还原度为0.91,金属化率为67.58%,焦炭的气化率为20.91%。在高炉边缘位置软熔带上方,含铁炉料的还原度为1,金属化率为96.91%,焦炭的气化率为21.36%。并且,随着炉料下行,还原后含铁炉料的金属铁面积越大,渣铁分离越明显,观察到的焦炭孔隙越大。在碳循环氧气高炉内,由于炉顶煤气循环,高炉煤气中CO利用增多,CO2排放量减少,高炉煤气的二次利用率提高,这为低碳绿色冶金提供了应用理论基础。
Abstract
In recent years, in the context of China′s "peak carbon dioxide emissions and carbon neutrality" strategy, low-carbon blast furnaces have become an important direction for the development of low-carbon metallurgical technology in China. Due to the large use of fossil fuels and the low utilization rate of top gas in the ironmaking process of blast furnaces, excessive CO2 emissions are caused. In order to reduce carbon emissions from blast furnace ironmaking, a new process of hydrogen rich carbon recycle oxygen furnace (HyCROF) has been proposed. In this paper, the reduction behavior and coke gasification behavior of iron bearing burden in the carbon recycle oxygen furnace (CROF) were studied by combining numerical simulation and laboratory experiments. The reduction degree of sinter and pellet and the separation phenomenon of slag and iron were analyzed by SEM-EDS, and the microscopic morphology of coke after gasification was characterized by mineral phase microscopy. The variation pattern of iron-containing charge reduction in the blast furnace obtained by numerical simulation and laboratory experiments is basically consistent, which verifies the feasibility of the combined method of numerical simulation and laboratory experiments.The research shows that in the same vertical direction of CROF, with the reduction degree and metallization rate of the iron-containing furnace material increasing as the position decreases, the gasification rate of the coke continues to increase. Above the soft melting zone in the center of CROF, the reduction degree of the iron-containing furnace material is 0.91, the metallization rate is 67.58%, and the gasification rate of coke is 20.91%. Above the soft melting zone at the edge of CROF, the reduction degree of the iron-containing furnace material is 1, the metallization rate is 96.91%, and the gasification rate of coke is 21.36%. In addition, with the downward movement of the furnace charge, the larger the metal iron area of the reduced iron-containing furnace charge, the more obvious the slag iron separation, and the larger the observed coke pores. In the carbon cycle oxygen blast furnace, the utilization of CO in blast furnace gas increases, CO2 emissions decrease and the secondary utilization of blast furnace gas increases due to the top gas circulation, which provides a theoretical basis for the application of low carbon green metallurgy.
关键词
高炉炼铁 /
碳循环 /
炉料还原 /
焦炭气化 /
低碳炼铁
{{custom_keyword}} /
Key words
blast furnace ironmaking /
carbon cycle /
charge reduction /
coke gasification /
low carbon ironmaking
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HOLAPPA L. A general vision for reduction of energy consumption and CO2 emissions from the steel industry[J]. Metals,2020,10(9):1117.
[2] 王新东,上官方钦,邢奕,等. “双碳”目标下钢铁企业低碳发展的技术路径[J]. 工程科学学报,2023,45(5):853.(WANG X D,SHANGGUAN F Q,XING Y,et al. Research on the low-carbon development technology route of iron and steel enterprises under the "double carbon" target[J]. Chinese Journal of Engineering,2023,45(5):853.)
[3] 崔志峰,徐安军,上官方钦. 国内外钢铁行业低碳发展策略分析[J]. 工程科学学报,2022,44(9):1496.(CUI Z F,XU A J,SHANGGUAN F Q. Low-carbon development strategy analysis of the domestic and foreign steel industry[J]. Chinese Journal of Engineering,2022,44(9):1496.)
[4] IEA. Iron and Steel[R]. Paris:International Energy Agency,2021.
[5] 朱荣,任鑫,薛波涛. 转炉炼钢工艺极限碳排放研究进展[J]. 钢铁,2023,58(3):1.(ZHU R,REN X,XUE B T. Research progress of ultimate carbon emission in BOF steelmaking process[J].Iron and Steel,2023,58(3):1.)
[6] 上官方钦,刘正东,殷瑞钰. 钢铁行业“碳达峰”“碳中和”实施路径研究[J]. 中国冶金,2021,31(9):15.(SHANGGUAN F Q,LIU Z D,YIN R Y. Study on implementation path of "carbon peak" and "carbon neutrality" in steel industry in China[J]. China Metallurgy,2021,31(9):15.)
[7] 张利娜.钢铁行业低碳技术应用及发展研究[J].冶金能源,2023,42(2):3.(ZHANG L N. Application and development research of low carbon technology in iron and steel industry[J]. Energy for Metallurgical Industry,2023, 42(2):3.)
[8] ZHAO J,ZUO H,WANG Y,et al. Review of green and low-carbon ironmaking technology[J]. Ironmaking and Steelmaking,2020,47(3): 296.
[9] 王锋,严定鎏,王海风,等. 鼓风参数对炉顶煤气循环高炉的影响分析[J]. 钢铁研究学报,2014,26(5):8.(WANG F,YAN D L,WANG H F,et al. Analysis of influence of blast parameters on top gas circulating blast furnace[J]. Journal of Iron and Steel Research,2014,26(5):8.)
[10] 肖学文,王刚,李牧明,等. 基于富氢/含碳煤气用于冶炼还原剂的减碳策略分析[J]. 中国冶金,2023,33(5):121.(XIAO X W,WANG G,LI M M,et al. Analysis of carbon reduction strategy based on hydrogen-rich/carbon-containing gas used for smelting reductant[J]. China Metallurgy,2023,33(5):121.)
[11] 王磊,郭培民,孔令兵,等. 高炉风口喷吹焦炉煤气的减排能力分析[J]. 烧结球团,2021,46(4):78.(WANG L,GUO P M,KONG L B,et al. Analysis on carbon emission reduction ability of blast furnace tuyere with COG injection[J]. Sintering and Pelletizing,2021,46(4):78.)
[12] CAPURSO T,STEFANIZZI M,TORRES M,et al. Perspective of the role of hydrogen in the 21 st century energy transition[J]. Energy Conversion and Management,2022,251:114898.
[13] 刘清梅,张福明. 日本大型钢铁企业低碳冶金技术的特点分析[J]. 上海金属,2023,45(1):1.(LIU Q M,ZHANG F M. Characteristics of low-carbon metallurgical technology of Japanese large-scale iron and steel enterprises[J]. Shanghai Metals,2023,45(1):1.)
[14] TANG J,CHU M,LI F,et al. Development and progress on hydrogen metallurgy[J]. International Journal of Minerals,Metallurgy and Materials,2020,27: 713.
[15] 邵建男,兰臣臣,张淑会,等. 高炉富氢冶炼后焦炭的性能演变研究现状及展望[J]. 中国冶金,2023,33(4):17.(SHAO J N,LAN C C,ZHANG S H,et al. Research status and prospect of coke property evolution after hydrogenrich smelting in blast furnace[J]. China Metallurgy,2023,33(4):17.)
[16] 赵沛,郭培民,张殿伟. 低温非平衡条件下氧化铁还原顺序研究[J]. 钢铁,2006(8):12.(ZHAO P,GUO P M,ZHANG D W. Study on reduction sequence of hematite at low-temperature non-equilibrium state[J]. Iron and Steel,2006 (8): 12.)
[17] 马淑芳,闫立强,闫焕敏,等. 温度对高炉焦炭块度及性能的影响[J]. 江西冶金,2022,42(6):1.(MA S F,YAN L Q,YAN H M,et al. Effect of temperature on coke size and properties of blast furnace[J]. Jiangxi Metallurgy,2022,42(6):1.)
[18] 刘云仙.焦炭在高炉中的劣化分析及其质量要求[J].煤质技术,2021,36(4):57.(LIU Y X. Analysis of coke deterioration and quality requirements under blast furnace injection[J].Coal Quality Technology,2021,36(4):57.)
[19] 张伟,郁肖兵,李强,等. 氧气高炉工艺研究进展及新炉型设计[J]. 重庆大学学报,2016,39(4):67.(ZHANG W,YU X B,LI Q,et al. The progress and the new profile design of oxygen blast furnace[J]. Journal of Chongqing University,2016,39(4):67.)
[20] 马财生,任廷志,杨二旭. 无钟高炉环形布料优化及布料精度[J]. 钢铁研究学报,2016,28(12):15.(MA C S,REN T Z,YANG E X. Optimization of ring charging at bell-less top blast furnace and accuracy analysis of burden distribution[J]. Journal of Iron and Steel Research,2016,28(12):15.)
[21] 张晓辉,李海峰,徐万仁,等. 富氢高炉风口理论燃烧温度的数学模型开发[J]. 材料与冶金学报,2022,21(1):31.(ZHANG X H,LI H F,XU W R,et al. Development of a mathematical model of raceway adiabatic flame temperature in hydrogen-rich blast furnace[J]. Journal of Materials and Metallurgy,2022,21(1):31.)
[22] 张伟阳,郝良元,钟文达,等. 基于大数据技术的炉缸侵蚀模型[J]. 钢铁,2020,55(8):160.(ZHANG W Y,HAO L Y,ZHONG W D,et al. Erosion model of hearth based on big data technology[J]. Iron and Steel,2020,55(8):160.)
[23] 储满生,郭宪臻,沈峰满,等. 多流体高炉数学模型的开发和应用[J]. 钢铁,2007(12):11.(CHU M S,GUO X Z,SHEN F M,et al. Development and application of multi-fluid blast furnace model[J]. Iron and Steel,2007(12):11.)
[24] 储满生,王宏涛,柳政根,等. 高炉炼铁过程数学模拟的研究进展[J]. 钢铁,2014,49(11):1.(CHU M S,WANG H T,LIU Z G,et al. Research progress on mathematical modeling of blast furnace ironmaking process[J]. Iron and Steel,2014,49(11):1.)
[25] NIE H,YU A,JIAO L,et al. Numerical investigation of shaft gas injection operation in oxygen-enriched ironmaking blast furnace[J]. Metallurgical and Materials Transactions B,2022,53(4): 2712.
[26] MOUSA E,SENK D,BABICH A. Reduction of Pellets-Nut coke mixture under simulating blast furnace conditions[J]. Steel Research International,2010,81(9): 706.
[27] 潘玉柱. 高炉含铁炉料交互作用及其对软熔带透气性影响研究[D]. 北京:北京科技大学,2020.(PAN Y Z. Study on the Interaction of Iron-containing Burdens and Its Influence on Permeability of Cohesive Zone in Blast Furnace[D]. Beijing: University of Science and Technology Beijing,2020.)
[28] 韩立浩,李跃华,韩立宁,等. COREX熔化气化炉物料运动和气流分布[J]. 钢铁研究学报,2021,33(1):32.(HAN L H,LI Y H,HAN L N,et al. Burden movement and gas distribution in COREX melter gasifier[J]. Journal of Iron and Steel Research,2021,33(1):32.)
[29] 罗霞光,张建良. 莱钢高炉解剖软熔带含铁炉料特性分析[J]. 中国冶金,2020,30(10):54.(LUO X G,ZHANG J L. Dissection analysis of soft-melting zone of blast furnace in Laisteel[J]. China Metallurgy,2020,30(10):54.)
[30] 董择上,薛庆国,左海滨,等. 氧气高炉喷吹焦炉煤气数学模型[J]. 钢铁,2017,52(4):18.(DONG Z S,XUE Q G,ZUO H B,et al. Mathematical model analysis on coke oven gas injection into oxygen blast furnace[J]. Iron and Steel,2017,52(4):18.)
[31] 兰臣臣,刘然,张淑会,等. 高炉内H2体积分数对焦炭气化反应的影响[J]. 钢铁,2020,55(8):100.(LAN C C, LIU R,ZHANG S H,et al. Effect of H2 volume percent on gasification reaction of coke in blast furnace[J]. Iron and Steel, 2020,55(8):100.)
[32] 布林朝克,郭婷. 利用碳气化反应热力学的影响因素调控铁氧化物的碳热还原热力学[J]. 矿冶工程,2014,34(1):77.(BULIN C K,GUO T. Control of thermodynamics of carbothermic reduction of iron oxides by using factors impacting thermodynamics of carbon gasification[J]. Mining and Metallurgical Engineering,2014,34(1):77.)
[33] 权芳民,王明华. 铁矿石直接还原现状及提高质量的对策[J]. 甘肃冶金,2021,43(1):30.(QUAN F M,WANG M H. The status and the improving quality countermeasures of Fe Ore direct reduction technology[J]. Gansu Metallurgy, 2021,43(1):30.)
[34] 张文成,任学延,张小勇,等. 干熄焦炭烧损影响因素及烧损机理研究[C]//第十三届中国钢铁年会论文集. 北京:冶金工业出版社,2022:6.(ZHANG W C,REN X Y,ZHANG X Y,et al. Study on influencing factors and mechanism of coke loss[C]//Proceedings of the 13th China Steel Annual Conference. Beijing:Metallurgical Industry Press,2022:6.)
[35] 王建丽,庹必阳,胡洵璞,等. 提升焦炭反应性对高炉块状区域含铁炉料还原的影响[J]. 矿冶工程,2015,35(5):72.(WANG J L,TUO B Y,HU X P,et al. Influence of coke reactivity improvement on reduction of ferric burden in blast furnace block zones[J]. Mining and Metallurgical Engineering,2015,35(5):72.)
[36] 周玮,吴国江,邓剑,等. 焦炭颗粒气化表面积变化结构因子的研究[J]. 煤炭转化,2008(1):33.(ZHOU W,WU G J,DENG J,et al. Study on the structural factor for determination of surface area evolution of char particle during gasification process[J]. Coal Conversion,2008(1):33.)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金钢铁联合基金资助项目(U1860113)
{{custom_fund}}