顶煤气循环氧气高炉低碳炼铁技术综合评价

张泽栋, 唐珏, 储满生

钢铁 ›› 2023, Vol. 58 ›› Issue (9) : 81-91.

PDF(5564 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月31日 星期四
PDF(5564 KB)
钢铁 ›› 2023, Vol. 58 ›› Issue (9) : 81-91. DOI: 10.13228/j.boyuan.issn0449-749x.20230327
原料与炼铁

顶煤气循环氧气高炉低碳炼铁技术综合评价

  • 张泽栋1, 唐珏1, 储满生1,2
作者信息 +

Comprehensive evaluation on low carbon iron making technology of top gas recycling oxygen blast furnace

  • 张泽栋1, 唐珏1, 储满生1,2
Author information +
文章历史 +

摘要

顶煤气循环氧气高炉工艺是一种新型高炉炼铁工艺,具有大幅降低燃料比、减少CO2排放和提高铁水生产效率等优点。对于氧气高炉的内部生产状态、整体生产指标、能量利用以及经济效益等进行了深入的系统性研究。通过顶煤气循环氧气高炉多流体模型,对风口喷吹循环煤气与风口炉身同时喷吹循环煤气2种路线下不同操作参数对氧气高炉的冶炼状态、生产指标、氧气高炉的能量利用效率以及经济效益的影响进行了研究对比。结果表明,随着理论燃烧温度的增加,氧气高炉焦比上升,产量进一步增大,高炉的热力学完善度和㶲效率降低,氧气高炉的综合效益增加。在只有风口喷吹循环煤气的条件下,与理论燃烧温度2 000 ℃的案例相比,理论燃烧温度为2 184 ℃时,焦比上升至243.9 kg/t,产量增加至5 538.3 t/d,热力学完善度由90.69%降低至88.30%,经济效益由13 540 万元/a上升至16 252 万元/a。与风口喷吹循环煤气的路线相比,风口和炉身同时喷吹循环煤气的顶煤气循环氧气高炉具有更大的产量、节焦量、热力学完善度、㶲效率以及更高的综合经济效益。在理论燃烧温度为2 184 ℃,炉腹煤气流量为3 881 m3/min时,风口炉身同时喷吹的顶煤气循环氧气高炉的产量提高51.46%,焦比降低43.82%,CO2减排32.52%,热力学完善度为92.19%,㶲效率为86.51%,综合效益为25 621万元/a。

Abstract

Top gas recycling oxygen blast furnace process is a new process of blast furnace ironmaking process, which has the advantages of greatly reducing fuel ratio, reducing CO2 emission and improving the production efficiency of iron. The internal production state, production indexes, energy utilization and economic benefit of top gas recycling oxygen blast furnace are studied systematically. Calculated by the multi-fluid model of the top gas recycling oxygen blast furnace, the influence of different operating parameters on the smelting state, production index, energy utilization efficiency and economic benefit of the oxygen blast furnace with the recycling gas tuyere being injected from furnace tuyere and the recycling gas tuyere being injected fromtuyere and the furnace shaft are studied and compared. The results showed that with the increase of theoretical combustion temperature, the coke ratio of top gas recycling oxygen blast furnace rose, the production increased further, the thermodynamic perfection degree of blast furnace and the exergic efficiency decreased, while the comprehensive benefit of oxygen blast furnace increased. With the recycling gas only injected from tuyere, under the case of theoretical combustion temperature of 2 184 ℃, the coke ratio rose to 243.9 kg/t, the yield increased to 5 538.3 t/d, and the thermodynamic perfection degree decreased from 90.69% to 88.30% compared with case of theoretical combustion temperature of 2 000 ℃. The economic benefit increased from 135.4 million yuan/a to 162.52 million yuan/a. Compared with the tuyere injection of recycling gas, the top gas recycling oxygen blast furnace with recycling gas injection both in the tuyere and shaft has greaterproduction, higher coke saving, thermodynamic perfection, exergic efficiency degree and higher comprehensive economic benefit. Under the condition of theoretical combustion temperature of 2 184 ℃ and gas flow rate of furnace belly of 3 881 m3/min, exergy efficiency of exergy and exergy was 86.51%, while exergy output of exergy and exergy were increased by 51.46%, coke ratio decreased by 43.82%, CO2 emission decreased by 32.52%, thermodynamic completeness of 92.19%, exergy efficiency of 86.51%. The comprehensive benefit is 256.21 million yuan/a.

关键词

顶煤气循环 / 氧气高炉 / 数值模拟 / 能量利用效率 / 经济效益 / 碳排放

Key words

top gas recycling / oxygen blast furnace / numerical simulation / energy utilization efficiency / economic benefit / carbon emission

图表

引用本文

导出引用
张泽栋, 唐珏, 储满生. 顶煤气循环氧气高炉低碳炼铁技术综合评价[J]. 钢铁, 2023, 58(9): 81-91 https://doi.org/10.13228/j.boyuan.issn0449-749x.20230327
ZHANG Zedong, TANG Jue, CHU Mansheng. Comprehensive evaluation on low carbon iron making technology of top gas recycling oxygen blast furnace[J]. Iron and Steel, 2023, 58(9): 81-91 https://doi.org/10.13228/j.boyuan.issn0449-749x.20230327

参考文献

[1] 赵紫薇,孔福林,童莉葛. 基于“3060”目标的中国钢铁行业二氧化碳减排路径与潜力分析[J]. 钢铁,2022,57(2):162. (ZHAO Z W, KONG F L, TONG L G. Analysis of CO2 emission reduction path and potential of China′s steel industry under the "3060" target[J]. Iron and Steel, 2022, 57(2): 162.)
[2] 王国栋,储满生.低碳减排的绿色钢铁冶金技术[J]. 科技导报,2020,38(14):68. (WANG G D, CHU M S. Green iron and steel metallurgy technology with low carbon emission reduction[J]. Science and Technology Review, 2020, 38(14):68.)
[3] 刘宏强,付建勋,刘思雨,等. 钢铁生产过程二氧化碳排放计算方法与实践[J]. 钢铁,2016,51(4):74. (LIU H Q, FU J X, LIU S Y,et al. Calculation methods and application of carbon dioxide emission during steel-making process[J]. Iron and Steel, 2016, 51(4): 74.)
[4] 李景云. 钢铁企业节能环保形势分析及应对措施[J]. 中国钢铁业,2014(3):20. (LI J Y. Analysis of energy conservation and environmental protection situation in iron and steel enterprises and countermeasures[J]. China Steel, 2014 (3): 20.)
[5] 毛瑞. 高炉炼铁工艺节能减排技术探讨[J]. 山西冶金,2023,46(1):54. (MAO R. Discussion on energy saving and emission reduction technology of blast furnace ironmaking progress[J]. Shanxi Metallurgy, 2023, 46(1): 54.)
[6] 李萍,尹世明,李静. 高炉炼铁工艺发展问题及优化研究[J]. 山东冶金,2023,45(2):1. (LI P, YIN S M, LI J. Research on the development and optimization of blast furnace ironmaking process[J]. Shandong Metallurgy, 2023, 45(2): 1.)
[7] 左海滨,张建良,王筱留. 高炉低碳炼铁分析[J]. 钢铁,2012,47(12):86. (ZUO H B, ZHANG J L, WANG X L. Analysis on low carbon iron-making for BF[J]. Iron and Steel, 2012, 47(12): 86.)
[8] 金鹏,姜泽毅,包成,等. 炉顶煤气循环氧气高炉的能耗和碳排放[J]. 冶金能源,2015,34(5):11. (JIN P, JIANG Z Y, BAO C, et al. Energy consumption and carbon emission of oxygen blast furnace with top gas recycling[J]. Energy for Metallurgical Industry, 2015, 34(5): 11.)
[9] ZHANG W, ZHANG J H, XUE Z L.Unsteady analyses of the top gas recycling oxygen blast furnace[J]. ISIJ International, 2016, 56(8): 1358.
[10] 薛庆国,杨帆,张欣欣,等. 氧气高炉的发展历程及其在北京科技大学的研究进展[J]. 工程科学学报,2021,43(12):1579. (XUE Q G, YANG F, ZHANG X X. Development of an oxygen blast furnace and its research progress in University of Science and Technology Beijing[J]. Chinese Journal of Engineering, 2021, 43(12): 1579.)
[11] YAMAOKA H, KAMEI Y S. Experimental study on an oxygen blast furnace process using a small test plant[J]. ISIJ International, 1992, 32(6): 709.
[12] YAMAOKA H, KAMEI Y S. Theoretical study on an oxygen blast furnace using mathematical simulation model[J]. ISIJ International, 1992, 32(6): 701.
[13] 高建军,齐渊洪,周渝生.氧气高炉炼铁技术分析[J]. 钢铁钒钛,2012,33(2):43.(GAO J J, QI Y H, ZHOU Y S. Technical analysis on oxygen blast furnace ironmaking process[J]. Iron Steel Vanadium Titanium, 2013, 33(2): 43.)
[14] ARIYAMA T, SATO M, NOUCHI T. Evolution of blast furnace process toward reductant flexibility and carbon dioxide mitigation in steel works[J]. ISIJ International, 2016, 56(10): 1681.
[15] 高建军,齐渊洪,严定鎏. 中国低碳炼铁技术的发展路径与关键技术问题[J]. 中国冶金,2021,31(9):65. (GAO J J, QI Y H, YAN D L. Development path and key technical problem of low carbon ironmaking in China[J]. China Metallurgy, 2021, 31(9): 65.)
[16] 秦民生,谢湧堃,杨永宜. 高炉超量喷吹煤粉及炉顶煤气部分循环工艺可行性研究[J]. 钢铁,1985,20(5):13.(QIN M S, XIE Y K, YANG Y Y. Feasibility study of a new blast furnace process of injecting coal at unusual high rate and partially recycling of top gas[J]. Iron and Steel, 1985, 20(5): 13.)
[17] 郭培民,高建军,赵沛. 氧气高炉多区域约束性数学模型[J]. 北京科技大学学报,2011,33(3):334. (GUO P M, GAO J J, ZHAO P. Multi-zone constrained mathematical model of oxygen blast furnace[J]. Journal of University of Science and Technology Beijing, 2011, 33(3): 334.)
[18] 高攀. 氧气高炉工艺的数学物理模拟[D]. 沈阳:东北大学,2013. (GAO P. Mathematical and Physical Simulation on Oxygen Blast Furnace Process[D]. Shenyang: Northeastern University, 2013.)
[19] 金鹏. 基于多层次模型的炉顶煤气循环氧气高炉可行性研究[D]. 北京:北京科技大学,2015. (JIN P. Feasibility Investigation on Oxygen Blast Furnace with Top Gas Recycling Based on Multi-level Models[D]. Beijing:University of Science and Technology Beijing, 2015.)
[20] 刘锦周. 氧气高炉炉身煤气和循环煤气行为基础研究[D]. 北京:北京科技大学,2015. (LIU J Z. Fundamental Research on Shaft Gas and Cycle Gas Behaviors in Oxygen Blast Furnace[D]. Beijing: University of Science and Technology Beijing, 2015.)
[21] MEIJER K, DENYS M, LASAR J. ULCOS: Ultra-low CO2 steelmaking[J]. Ironmaking and Steelmaking, 2009, 36(4):250.
[22] 董择上,薛庆国,左海滨,等.氧气高炉喷吹焦炉煤气数学模型[J].钢铁,2017,52(4):18. (DONG Z S,XUE Q G,ZUO H B,et al. Mathematical model analysis on coke oven gas injection into oxygen blast furnace[J]. Iron and Steel,2017,52(4):18.)
[23] MENG J L,TANG H Q,GUO Z C. Comprehensive mathematical model of full oxygen blast furnace with top recycle gas heated by gasifier[J]. Applied Mechanics and Materials,2013,268(1):356.[24] LIU L Z,JIANG Z Y,ZHANG X R. Effects of top gas recycling on in-furnace status,productivity,and energy consumption of oxygen blast furnace[J]. Energy,2018,163(1):144.
[25] 齐渊洪,严定鎏,高建军.氧气高炉工业化试验研究[J].钢铁,2011,46(3):6. (QI Y H,YAN D L,GAO J J. Study on industrial test of the oxygen blast furnace[J]. Iron and Steel,2011,46(3):6.)
[26] ZHANG Z L,MENG J L,GUO L. Numerical study of the reduction process in an oxygen blast furnace[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,2016,47(1):467.
[27] WANG P,LI J X,ZHOU L Y. Theoretical and experimental investigation of oxygen blast furnace process with high injection of hydrogenous fuel[J]. Ironmaking and Steelmaking,2013,40(4):312.
[28] SHE X F,AN X W, WANG J S. Numerical analysis of carbon saving potential in a top gas recycling oxygen blast furnace[J]. Journal of lron and Steel Research International,2017,24(6):608.
[29] CHU M. Study on Super High Efficiency Operations of Blast Furnace Based on Multi-Fluid Model[D].Japan:Tohoku University,2004.
[30] CHU M,YAGI J,SHEN F. Modelling on Blast Furnace Process and Innovative Ironmaking Technologies[M].Shenyang:Northeastern University Press,2006.

基金

国家自然科学基金资助项目(51904063); 中央高校基本科研业务费资助项目(N2225046); 中国宝武低碳冶金创新基金资助项目(BWLCF202102); 河北省重点研发计划资助项目(21314001D); 第七批“万人计划”资助项目(ZX20220553)

PDF(5564 KB)

50

Accesses

0

Citation

Detail

段落导航
相关文章

/