智能钢厂是实现绿色低碳钢铁制造目标和钢铁工业高质量发展的必然路径。冶金流程工程学的提出和发展,已成为指导钢铁业高质量可持续发展的重要理论基石。为了达成智能钢厂低碳高效的生产目标,实现资源/能源的优化配置,从冶金流程工程学提出的钢铁制造流程动态运行物理本质出发,开展制造流程“运行程序”相应的智能管控技术研发,力求通过生产计划调度技术实现对炼钢-连铸-热轧等制造流程的“运行程序”控制,以适应市场需求下订单驱动的钢铁制造模式,这是促使生产过程有序、高效低成本运行的调控手段,即生产计划调度指令决定了钢铁企业设备利用率、生产效率和能源利用效率。讨论了以生产计划调度为核心的钢铁制造流程的运行管控技术,并给出了实践案例,针对中厚板组板及板坯一体化设计问题,实现了生产订单的组合优化,有效提升了系统成材率,为规模化钢铁生产满足个性化多品种小批量市场需求创造了条件;一体化生产批量计划相比于分工序编制生产批量计划能够降低余材率1.27%,提升炼钢-连铸-热轧区段物质流运行管控效果;基于炼钢厂生产调度和动态调度的物质流运行优化,可以缩短生产流程总时间10%,降低转炉工序用氧波动49.32%,改善了物质流和能量流的协同运行效果。因此,通过生产计划调度的“运行程序”控制技术,引导制造流程系统朝着动态-有序、协同-连续的运行状态发展,进而有利于实现钢铁生产的高效低成本优化运行。
Abstract
Smart steel plants are an inevitable path to achieve the goal of green and low-carbon steel manufacturing and the high-quality development of steel industry. Metallurgical process engineering has become an important theoretical cornerstone for guiding the high-quality sustainable development of the steel industry. To achieve the goal of low-carbon and efficient production in intelligent steel plants and optimize resource/energy allocation,based on the physical essence of dynamic operation of steel manufacturing processes proposed in metallurgical process engineering,intelligent control technology research and development corresponding to the "operation program" of manufacturing processes are carried out. Strive to achieve "operation program" control of the steelmaking-continuous casting-hot rolling manufacturing process through production planning and scheduling technology,in order to adapt to the order driven steel manufacturing model under market demand. This is a regulatory means to promote the orderly,efficient and low-cost operation of the production process,that is,the production planning and scheduling instructions determine the level of equipment utilization,production efficiency,and energy utilization efficiency in steel enterprises. The operation and control technology and practice of steel manufacturing processes with production planning and scheduling as the core were discussed. Aiming at the integrated design of plate assembly and slab,combinatorial optimization of production orders is realized,which effectively improves the yield of the system and creates conditions for large-scale steel production to meet the market demand of personalized multi variety and small batch. Integrated production batch planning can reduce the residual material rate by 1.27% and improve the mass flow control effect in the steelmaking-continuous casting-hot rolling sections compared to the production batch planning based on separate processes.The optimization of mass flow operation based on production scheduling and dynamic scheduling in steelmaking plants can shorten the total production process time by 10%,reduce oxygen consumption fluctuations in the converter process by 49.32%,and improve the control effect of mass flow and energy flow operation. Therefore,through the "operation program" control technology of production planning and scheduling,the manufacturing process system is guided towards a dynamic-orderly,collaborative-continuous operation state,which is conducive to achieving efficient and low-cost optimization of steel manufacturing.
关键词
冶金流程工程学 /
钢铁制造 /
生产运行管控 /
计划调度 /
技术实践
{{custom_keyword}} /
Key words
metallurgical process engineering /
steel manufacturing /
production operation control /
planning and scheduling /
technical practice
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王新东,黄永建,彭绍峰,等. “绿色、智能、高效”的新一代电炉短流程特钢厂:河钢石钢新区[J]. 钢铁,2022,57(9):1. (WANG X D,HUANG Y J,PENG S F,et al. A new generation of electric furnace short-flow special steel plant HBIS Group Shisteel New Region designed with concept of "green,intelligent and efficient"[J]. Iron and Steel,2022,57(9):1.)
[2] ZHENG Z,ZHANG K T,GAO X Q. Human-cyber-physical system in production and operation decision optimization for smart steel plants[J]. Scientia China Technologic Science,2022,65:247.
[3] 张福明,李林,刘清梅. 中国钢铁产业发展与展望[J]. 冶金设备,2021(1):1. (ZHANG F M,LI L,LIU Q M. Prospect and development of China′s steel industry[J]. Metallurgical Equipment,2021(1):1.)
[4] 孙彦广. 钢铁工业智能制造的集成优化[J]. 科技导报,2018,36(21):30. (SUN Y G. On integrated optimization for steel intelligent manufacturing[J]. Science and Technology Review,2018,36(21):30.)
[5] 颉建新,张福明. 钢铁制造流程智能制造与智能设计[J]. 中国冶金,2019,29(2):1. (XIE J X,ZHANG F M. Intelligent manufacturing and intelligent design of iron and steel manufacturing process[J]. China Metallurgy,2019,29(2):1.)
[6] 王新东. “融合协同”的绿色工程管理方法及应用[J]. 钢铁,2022,57(11):1. (WANG X D. Green project management method and application of "integration and coordination"[J]. Iron and Steel,2022,57(11):1. )
[7] 吴耀光,杨风国,王阳明,等. 基于绿色钢铁的转炉炼钢工艺设计及生产[J]. 钢铁,2022,57(11):77. (WU Y G,YANG F G,WANG Y M,et al. Converter steelmaking process design and production based on green steel[J]. Iron and Steel,2022,57(11):77.)
[8] 魏绿坤,徐安军,潘俊. 基于Flexsim的炼钢-连铸区段流程仿真与优化分析[J]. 中国冶金,2023,33(4):56. (WEI L K,XU A J,PAN J. Simulation and optimization analysis of steelmaking and continuous casting process based on Flexsim[J]. China Metallurgy,2023,33(4):56. )
[9] 张福明. 智能化钢铁制造流程信息物理系统的设计研究[J]. 钢铁,2021,56(6):1. (ZHANG F M. Research and design on cyber physics system of intelligent iron and steel manufacturing process[J]. Iron and Steel,2021,56(6):1.)
[10] 张福明,颉建新. 冶金流程工程学的典型应用[J]. 钢铁,2021,56(8):10. (ZHANG F M,XIE J X. Typical application of metallurgical process engineering[J]. Iron and Steel,2021,56(8):10.)
[11] 殷瑞钰. 关于智能化钢厂的讨论:从物理系统一侧出发讨论钢厂智能化[J]. 钢铁,2017,52(6):1. (YIN R Y. A discussion on:"Smart" steel plant-view from physical system side[J]. Iron and Steel,2017,52(6):1.)
[12] 殷瑞钰. 冶金流程工程学[M]. 北京:冶金工业出版社,2009. (YIN R Y. Metallurgical Process Engineering[M]. Beijing:Metallurgical Industry Press,2009.)
[13] 殷瑞钰. 冶金流程集成理论与方法[M]. 北京:冶金工业出版社,2013. (YIN R Y. Theory and Method of Metallurgical Process Integration[M]. Beijing:Metallurgical Industry Press,2013.)
[14] 韩伟刚,胡长庆,郦秀萍,等. 炼铁-炼钢区段界面动态运行过程建模和仿真[J]. 中国冶金,2019,29(7):17. (HAN W G,HU C Q,LI X P,et al. Modeling and simulation of dynamic operation process of ironmaking-steelmaking inrerface[J]. China Metallurgical,2019,29(7):17.)
[15] 邓帅. 首钢京唐“全三脱”炼钢过程铁素物质流调控的应用基础研究[D]. 北京:北京科技大学,2020. (DENG S. Basic Study on the Regulation of Ferruginous Mass Flow in the De[S]-De[Si]/[P] Pretreatment of Shougang Jingtang′s Steelmaking Process[D]. Beijing:University of Science and Technology Beijing,2020.)
[16] 吴双平,徐安军. 钢铁生产流程的物质流仿真研究[J]. 钢铁,2021,56(8):73. (WU S P,XU A J. A review of mass flows simulation in steel production process[J]. Iron and Steel,2021,56(8):73.)
[17] 连小圆,郑忠,王永周,等. 钢铁制造流程动态运行要素的认识与实践[J]. 钢铁,2021,56(8):53. (LIAN X Y,ZHENG Z,WANG Y Z,et al. Understanding and practice of dynamic operation elements in steel manufacturing process[J]. Iron and Steel,2021,56(8):53.)
[18] 周继程,上官方钦,丁毅,等. 钢铁制造流程“界面”技术与界面能量损失分析[J]. 钢铁,2020,55(12):99. (ZHOU J C,SHANGGUAN F Q,DING Y,et al. Discuss on interface technology and energy loss of main interface in steel manufacturing process[J]. Iron and Steel,2020,55(12):99.)
[19] TAN Y Y,ZHOU M C,WANG Y Y,et al. A Hybrid MIP-CP approach to multistage scheduling problem in continuous casting and hot-rolling processes[J]. IEEE Transactions on Automation Science and Engineering,2019,16(4):1860.
[20] 徐永军,宋健海,钱卫东. 钢铁行业智能工厂集中控制管控一体的创新与实践[J]. 冶金自动化,2023,47(增刊1):558. (XU Y J,SONG J H,QIAN W D. Innovation and practice of integrating centralized control and management of intelligent factories in the steel industry[J]. Metallurgical Industry Automation,2023,47(s1):558.)
[21] 殷瑞钰. 论钢厂制造过程中能量流行为和能量流网络的构建[J]. 钢铁,2010,45(4):5. (YIN R Y. Comment on behacior of energy flow and construction of energy flow network for steel manufacturing process[J]. Iron and Steel,2010,45(4):5.)
[22] 於春月,王成恩. 钢铁一体化生产多目标合同计划建模与算法[J]. 控制理论与应用,2009,26(12):1452. (YU C Y,WANG C E. Multi-objective order-planning model and algorithm for integrated steel production[J]. Control Theory and Applications,2009,26(12):1452.)
[23] 芦永明,王丽娜,陈宏志,等. 面向钢铁制造流程的合同计划组合优化[J]. 东南大学学报(自然科学版),2012,42(z1):168. (LU Y M,WANG L N,CHEN H Z,et al. Combinatorial optimization of order planning for steel manufacturing process[J]. Journal of Southeast University(Natural Science Edition),2012,42(z1):168.)
[24] TANG L X,WANG G S. Decision support system for the batching problems of steelmaking and continuous-casting production:2008 Beijing Olympic Games[J]. Omega (Oxford),2008,36(6):976.
[25] YI J,JIA S J,DU B,et al. Multi-objective model and optimization algorithm based on column generation for continuous casting production planning[J]. Journal of Iron and Steel Research International,2019,26(3):242.
[26] PUTTKAMMER K,WICHMANN M G,SPENGLER T S. A GRASP heuristic for the hot strip mill scheduling problem under consideration of energy consumption[J]. Zeitschrift für Betriebswirtschaft,2016,86(5):537.
[27] PENG K K,PAN Q K,GAO L,et al. An improved artificial bee colony algorithm for real-world hybrid flowshop rescheduling in steelmaking-refining-continuous casting process[J]. Computers and Industrial Engineering,2018,122:235.
[28] HAO J H,LIU M,JIANG S L,et al. A soft-decision based two-layered scheduling approach for uncertain steelmaking-continuous casting process[J]. European Journal of Operational Research,2015,244(3):966.
[29] 郑忠,王永周,卢义,等. 中厚板组板及板坯设计的智能优化模型和系统[J]. 钢铁,2020,55(4):53. (ZHENG Z,WANG Y Z,LU Y,et al. Intelligent optimization model and system of plate and slab design of medium steel plate[J]. Iron and Steel,2020,55(4):53.)
[30] 郑忠,王永周,卢义,等. 考虑铸轧协调的炼钢-连铸-热轧一体化生产计划[J]. 钢铁,2020,55(12):107. (ZHENG Z,WANG Y Z,LU Y,et al. Integrated production planning of steelmaking-continuous casting-hot rolling considering coordination between casting and rolling[J]. Iron and Steel,2020,55(12):107.)
[31] TANG L X,WANG G S,LIU J Y,et al. A combination of Lagrangian relaxation and column generation for order batching in steelmaking and continuous-casting production[J]. Naval Research Logistics,2011,58(4):370.
[32] TANG L X,WANG X P. A two-phase heuristic for the production scheduling of heavy plates in steel industry[J]. IEEE Transactions on Control Systems Technology,2010,18(1):104.
[33] 徐兆俊,郑忠,高小强. 炼钢连铸生产调度的优先级策略混合遗传算法[J]. 控制与决策,2016,31(8):1394. (XU Z J,ZHENG Z,GAO X Q. HGA combined with priority stragy for production planning of steelmaking-continuous-casting[J]. Control and Decision,2016,31(8):1394.)
[34] ZHENG Z,LONG J Y,GAO X Q. Production scheduling problems of steelmaking-continuous casting process in dynamic production environment[J]. Journal of Iron and Steel Research International,2017,24(6):586.
[35] LIAN X Y,ZHENG Z,WANG C,et al. An energy-efficient hybrid flow shop scheduling problem in steelmaking plants[J]. Computers and Industrial Engineering,2021,162:107683.
[36] XU Z J,ZHENG Z,GAO X Q,et al. Reducing the fluctuation of oxygen demand in a steel plant through optimal production scheduling[J]. Journal of Cleaner Production,2021,282:124529.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金重点资助项目(51734004); 国家重点研发计划资助项目(2020YFB1712803)
{{custom_fund}}