317L奥氏体不锈钢中Mo元素的增加使其具有更加优异的抗化学腐蚀能力,然而较高的Mo元素含量会增加其凝固过程δ-铁素体相的析出倾向,同时促进δ-铁素体向sigma脆性相的转化,该类Cr-Mo复合相需要采用长时间的均质化处理进行消除,但长时间高温热处理会造成晶粒的异常生长,对后续腐蚀性能产生较大影响,因此在凝固过程中对其凝固组织的控制极为重要。冷却速率是影响不锈钢凝固组织的重要因素之一,利用高温共聚焦显微镜(HT-CLSM)观察了3种典型冷速(6、100、1 000 ℃/min)下317L的凝固组织演变过程,并借助金相显微镜(OM)、扫描电子显微镜及能谱仪(SEM-EDS)和电子背散射衍射技术(EBSD)等表征手段对其凝固组织以及Cr-Mo复合相形貌、分布和含量进行分析。结果表明,317L不锈钢为FA型凝固,在凝固过程中δ-铁素体相率先从液相中形核,并与液相发生包晶反应生成γ-奥氏体相;随着冷却速率的增加,材料的结晶形核过程存在相应的滞后性,导致其过冷度增加,初始凝固温度略有降低,同时Cr、Mo元素的扩散行为受到影响,致使sigma相含量随着冷却速率的增加先增加后降低,铁素体相含量先降低后增加;317L中的Cr、Mo、Ni元素均发生了偏析,其中Cr、Mo元素发生了正偏析,Ni元素发生了负偏析,且Mo元素的偏析最为严重。
Abstract
The increases of Mo element in 317L austenitic stainless steel make it have better chemical corrosion resistance. However,the higher Mo content will increase the precipitation tendency of the δ-ferrite phase during solidification,and promote the transformation of δ-ferrite into sigma phase. This type of Cr-Mo composite phase requires long-term homogenization treatment to eliminates it,but long-term high-temperature heat treatment will cause abnormal grain growth,which has the significant impact on subsequent corrosion performance. Therefore,control of the structure during the solidification process is very significant. The cooling rate is one of the critical factors affecting the solidification structure of stainless steel. The solidification microstructure evolution of 317L under three typical cooling rates (6,100,1 000 ℃/min) was observed by high-temperature confocal microscope (HT-CLSM). The solidification microstructure of the materials and the morphology,distribution and content of Cr-Mo composite phase was analyzed by metallographic microscope (OM),scanning electron microscope (SEM),energy dispersive spectrometer (EDS) and electron backscatter diffraction (EBSD).The results showed that the solidification type of 317L was FA. During the solidification process,the δ-ferrite phase first nucleated from the liquid phase,and the γ-austenite phase was formed by the peritectic reaction in the liquid phase. With the increased of cooling rates,the crystallization nucleation process of the material had a corresponding hysteresis,which lead to the rise of supercooling degree and the initial solidification temperature decrease slightly. At the same time,the diffusion behavior of Cr and Mo elements had been affected,while the content of the sigma phase increased first and then decreased with the increased of cooling rate,the content of ferrite phase decreased first and then increased. And the Cr,Mo and Ni elements in 317L had been segregated,in which the Cr and Mo segregated positively,the Ni segregated negatively,and the segregation of Mo was the most serious.
关键词
奥氏体不锈钢 /
冷却速率 /
凝固组织 /
HT-CLSM /
Cr-Mo复合相
{{custom_keyword}} /
Key words
austenitic stainless steel /
cooling rate /
solidification structure /
HT-CLSM /
Cr-Mo composite phase
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 罗永赞. 近代超级不锈钢的发展[J]. 特殊钢,2000(4):5.(LUO Y Z. Advance on modern super stainless steel[J]. Special Steel,2000(4):5.)
[2] 孙长庆. 超级奥氏体不锈钢的发展,性能与应用(上)[J]. 化工设备设计,1999(6):38.(SUN C Q. Development application and characteristic of super austenitic stainless steel[J]. Process Equipment and Piping,1999(6):38.)
[3] LO K H,SHEK C H,LAI J K L. Recent developments in stainless steels[J]. Materials Science and Engineering R Reports,2009,(65):39.
[4] PERRICONE M J,DUPONT J N.Effect of composition on the solidification behavior of several Ni-Cr-Mo and Fe-Ni-Cr-Mo alloys[J]. Metallurgical and Materials Transactions A,2006,37:1267.
[5] YE X,ZHANG P,ZHAO J.et al.Effect of macro- and micro-segregation on hot cracking of Inconel 718 superalloy argon-arc multilayer cladding[J]. Journal of Materials Processing Technology,2018,258:251.
[6] FONDA R W,LAURIDSEN E M,LUDWIG W,et al.Two-dimensional and three-dimensional analyses of sigma precipitates and porosity in a superaustenitic stainless steel[J]. Metallurgical and Materials Transactions A,2007,38:2721.
[7] INONU H,KOSEKI T.Solidification mechanism of austenitic stainless steels solidified with primary ferrite[J]. Acta Materialia,2017,124:430.
[8] 高建兵,范思鹏,张树才,等. 新型超级奥氏体不锈钢654SMO偏析行为及均匀化工艺[J]. 钢铁,2018,53(8):83.(GAO J B,FAN S P,ZHANG S C,et al. Segregation behavior and homogenizing treatment of a new type super austenitic stainless steel 654SMO[J]. Iron and Steel,2018,53(8):83.)
[9] 曾莉,张威,王岩. 超级奥氏体不锈钢偏析行为及元素再分配规律[J]. 材料热处理学报,2015,36(4):232.(ZENG L,ZHANG W,WANG Y,et al. Microsegregation behavior and element redistribution in superaustenitic stainless steel[J]. Transactions of Materials and Heat Treatment,2015,36(4):232.)
[10] ZHANG X F,TERASAKI H,KOMIZO Y.Correlation of delta-ferrite precipitation with austenite grain growth during annealing of steels[J]. Philosophical Magazine Letters,2011,91:491.
[11] HAO Y,LI J,LI X,et al.Influences of cooling rates on solidification and segregation characteristics of Fe-Cr-Ni-Mo-N super austenitic stainless steel[J]. Journal of Materials Processing Technology,2019,(275):116326.
[12] BLECKMANN M,GLEINIG J,HUFENBACH J.Effect of cooling rate on the microstructure and properties of FeGrVC[J]. Journal of Alloy and Compounds,2015,634:200.
[13] 陈婉婉. 含Mo奥氏体不锈钢凝固偏析行为及偏析机理研究[D]. 西安:西安建筑科技大学,2020.(CHEN W W.Study on Solidification Segregation Behavior and Segregation Mechanism of Mo-austenitic Stainless Steel[D]. Xi’an:Xi’an University of Architecture and Technology,2020.)
[14] FU J W,YANG Y S,GUO J J,et al.Effect of cooling rate on solidification microstructures in AISI 304 stainless steel[J]. Materials Science and Technology,2008,24:941.
[15] WU C F,SHI L,et al.Microstructural evolution in 316LN austenitic stainless steel during solidification process under different cooling rates[J]. Journal of Materials Science,2015,51:2529.
[16] LI X,GAO F,JIAO J,et al.Influences of cooling rates on delta ferrite of nuclear power 316H austenitic stainless steel[J]. Materials Characterization,2021,174:111029.
[17] CHEN C,CHENG G.Delta-ferrite distribution in a continuous casting slab of Fe-Cr-Mn austenitic stainless steel[J]. Metallurgical and Materials Transactions B,2017,48:2324.
[18] PERRICONE M J,ANDERSON T D,ROBINO C V,et al.Effect of composition on the formation of sigma during single-pass welding of Mo-bearing stainless steels[J]. Metallurgical and Materials Transactions A,2007,38:1976.
[19] KIM S H,MOON H K,KANG T,et al.Dissolution kinetics of delta ferrite in AISI 304 stainless steel produced by strip casting process[J]. Materials Science and Engineering A,2003,356:390.
[20] SCHINO A D,MECOZZI M G,BARTERI M,et al.Solidification mode and residual ferrite in low-Ni austenitic stainless steels[J]. Journal of Materials Science,2000,35(2):375.
[21] 范修谦. 铸造奥氏体不锈钢的铬镍当量比和相对磁导率[J]. 特种铸造及有色合金,2011,31(5):439.(FAN X Q. Chromium nickel equivalentand relative magnetic permeability in the austenitic stainless steel[J]. Special Casting and Nonferrous Alloys,2011,31(5):439.)
[22] RUSTANDI A,SETIAWAN S.The Effect of ferrite content on mechanical properties and corrosion behaviour of austenitic stainless steel 308L weld metal[J]. Solid State Phenomena,2017,263:108.
[23] CHUANG Y Y,CHANG Y A.A thermodynamic analysis and calculation of the Fe-Ni-Cr phase diagram[J]. Metallurgical and Materials Transactions A,1987,18(6):733.
[24] LI Y N,ZOU D N,CHEN W W,et al.Effect of cooling rate on solidification and segregation characteristics of 904L super austenitic stainless steel[J]. Metals and Materials International,2022,28:1907.
[25] 谢绍贤,张浩浩,龙木军. 不同连铸冷却强度下22MnB5钢的组织演变行为[J]. 钢铁,2023,58(12):71.(XIE S X,ZHANG H H,LONG M J. Microstructure evolution behavior of 22MnB5 steel under different continuous casting cooling intensities[J]. Iron and Steel,2023,58(12):71.)
[26] 李苗苗. 冷却速率对904L不锈钢凝固组织及耐点蚀性能的影响研究[D]. 西安:西安建筑科技大学,2022.(LI M M.Effect of Cooling Rate on Solidification Structure and Pitting Corrosion Resistance of 904L Stainless Steel[D]. Xi’an:Xi’an University of Architecture and Technology,2022.)
[27] LI M,ZOU D,LI Y,et al.Effect of cooling rate on pitting corrosion behavior of 904L austenitic stainless steel in a simulated flue gas desulfurization solution[J]. Metals and Materials International,2023,29(3):730.
[28] 贺立华. 焊接快速成形316L不锈钢的组织和性能研究[D]. 南昌:南昌航空大学,2015.(HE L H.Microstructure and Mechanical Properties of 316L Stainless Steel Fabricated by Welding Rapid Forming[D]. Nanchang:Nanchang Hangkong University,2015.)
[29] 黄福祥,王新华,王万军. 冷却速率对奥氏体不锈钢凝固过程影响的原位观察[J]. 北京科技大学学报,2012,34(5):530.(HUANG F X,WANG X H,WANG W J. Effect of cooling rate on the solidification process of austenitic stainless steel by in-situ observation[J]. Journal of University of Science and Technology Beijing,2012,34(5):530.)
[30] JIANG W G,DONG J S,WANG L,et al.Effect of casting modulus on microstructure and segregation in K441 superalloy casting[J]. Journal of Materials Science and Technology,2011,27(9):831.
[31] GONG L,CHEN B,DU Z H,et al.Investigation of solidification and segregation characteristics of cast Ni-base superalloy K417G[J]. Materials Science and Technology,2018,34:541.
[32] BOWER T,BRODY H,FLEMINGS M.Measurements of solute redistribution indendritic solidification[J]. Transaction of the Metallurgical Society of AIME,1966,236(5):624.
[33] 张海宝,刘福斌,李花兵. 冷却速率对N06625合金凝固过程微观偏析的影响[J]. 中国冶金,2022,32(12):48.(ZHANG H B,LIU F B,LI H B. Effect of cooling rate on microsegregation during solidifcation of N06625 alloy[J]. China Metallurgy,2022,32(12):48.)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
山西省重点研发计划资助项目(202202050201019); 国家自然科学基金资助项目(52271067)
{{custom_fund}}