HIsmelt熔融还原工艺处理赤泥的可行性分析与探讨

郄亚娜, 李娜, 张淑会, 魏召强, 李艳军, 王新东

钢铁 ›› 2024, Vol. 59 ›› Issue (3) : 175-182.

PDF(1445 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月31日 星期四
PDF(1445 KB)
钢铁 ›› 2024, Vol. 59 ›› Issue (3) : 175-182. DOI: 10.13228/j.boyuan.issn0449-749x.20230530
环保与能源

HIsmelt熔融还原工艺处理赤泥的可行性分析与探讨

  • 郄亚娜1, 李娜1, 张淑会1, 魏召强2, 李艳军3, 王新东4
作者信息 +

Feasibility analysis and discussion on treating red mud by HIsmelt reduction process

  • 郄亚娜1, 李娜1, 张淑会1, 魏召强2, 李艳军3, 王新东4
Author information +
文章历史 +

摘要

赤泥作为冶炼铝土矿产生的固体废弃物,产量大、利用率低,中国赤泥的利用率在10%以下,目前大部分赤泥仍堆放处理,不仅占用大量土地资源,而且会对环境造成严重污染,实现多渠道、大规模的赤泥回收利用已成为中国乃至全世界亟待解决的课题。通过物质能量守恒定律并结合FactSage热力学计算及试验验证,分析HIsmelt熔融还原高铁赤泥炉渣的物相析出过程及黏度变化规律,得到了HIsmelt熔融还原处理赤泥的添加比例,并通过炉渣熔融改制处理探究了HIsmelt熔融还原处理赤泥生产微晶石的可行性。研究结果表明,在HIsmelt正常冶炼PB矿粉工艺条件下配加30%(质量分数)以下的赤泥对炉渣黏度和物相组成的影响不大;通过改变炉渣碱度、MgO/Al2O3质量比、添加稀释剂对炉渣进行熔融改质,得到在炉渣碱度为1.2时,MgO/Al2O3质量比为0.6左右时的炉渣黏度最低,但同时炉渣中w(SiO2)较低,这表明单纯调整炉渣成分虽可改善炉渣流动性,但无法满足生产微晶石的w(SiO2)要求。在保证炉渣流动性的基础上,通过添加CaF2可增加炉渣中w(SiO2),当CaF2添加量为3%~5%时,炉渣中w(SiO2)达到40%以上,可考虑作为生产微晶石的原料。

Abstract

Red mud, as a solid waste produced by smelting bauxite, has a large production and low utilization rate, and the utilization rate of red mud in China is less than 10%. At present, most of the red mud is disposed of by piling, which not only occupies a large amount of land resources, but also causes serious pollution to the environment, and the realization of multi-channel and large-scale recycling of red mud has become an urgent issue in China and even in the whole world. Through the law of conservation of matter and energy and combined with FactSage thermodynamic calculations and experimental verification, we analyzed the physical phase precipitation process and viscosity change rule of HIsmelt melt-reduced high iron red mud slag, obtained the addition ratio of HIsmelt melt-reduced treated red mud, and explored the feasibility of producing microcrystalline stone from HIsmelt melt-reduced treated red mud through the slag melting and reforming treatment. The results show that the addition of 30% (mass percent) or less of red mud under the normal smelting PB ore powder process conditions of HIsmelt has little effect on the slag viscosity and physical phase composition; melt reforming of slag by changing the slag alkalinity, the mass ratio of MgO/Al2O3, and the addition of diluent was obtained to obtain the decrease of viscosity with the increase of the slag alkalinity; at the time when the slag alkalinity is 1.2,and the MgO/Al2O3 mass ratio of about 0.6 slag viscosity lowest, but at the same time the slag w(SiO2) decrease, which shows that purely adjust the slag composition can improve the slag mobility, but can not meet the production of microcrystalline stone w(SiO2) content requirements. On the basis of ensuring slag fluidity, w(SiO2) content in slag can be increased by adding CaF2. When CaF2 is added at 3%-5%, the slag reaches more than 40%, which can be considered as the raw material for the production of microcrystalline stone.

关键词

HIsmelt工艺 / 赤泥 / 微晶石 / 炉渣改制 / 物相演变

Key words

HIsmelt technology / red mud / microcrystalline stone / slag restructuring / phase evolution

图表

引用本文

导出引用
郄亚娜, 李娜, 张淑会, . HIsmelt熔融还原工艺处理赤泥的可行性分析与探讨[J]. 钢铁, 2024, 59(3): 175-182 https://doi.org/10.13228/j.boyuan.issn0449-749x.20230530
QIE Yana, LI Na, ZHANG Shuhui, et al. Feasibility analysis and discussion on treating red mud by HIsmelt reduction process[J]. Iron and Steel, 2024, 59(3): 175-182 https://doi.org/10.13228/j.boyuan.issn0449-749x.20230530

参考文献

[1] SZEPVOLGYI J.A chemical engineer's view of the red mud disaster[J]. Nachrichten aus der Chemie, 2011, 59(5): 5.
[2] HUANG K, LI Y F, JIAO S Q, et al.Adsorptive removal of methylene blue dye wastewater from aqueous solution using citric acid activated red mud[J]. Chinese Journal of Nonferrous Metals, 2011, 21(12): 3182.
[3] 高建军,齐渊洪,居殿春,等. 从赤泥中联合提取铁和氧化铝试验[J]. 钢铁, 2015, 50(9): 11.(GAO J J,QI Y H,JU D C,et al. Experiment on the combined extraction of iron and alumina from red mud[J]. Iron and Steel, 2015, 50(9): 11.)
[4] 于目深,王旭江,孙德强,等.赤泥资源化利用现状研究[J].中国矿业,2022,31(6):1.(YU M S,WANG X J,SUN D Q, et al. Study on the current status of resource utilization of red mud[J]. China Mining Magazine, 2022, 31(6): 1.)
[5] KHAIRUL M A, ZANGANEH J, MOGHTADERI B.The composition, recycling and utilisation of Bayer red mud[J]. Resources,Conservation and Recycling,2019, 141: 483.
[6] YUAN S, LIU X, GAO P, et al.A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud[J]. Journal of Hazardous Materials, 2020, 394: 122579.
[7] WANG L, SUN N, TANG H H, et al.A review on comprehensive utilization of red mud and prospect analysis[J].Minerals, 2019 ,9(6): 362.
[8] XUE S, ZHU F, KONG X, et al.A review of the characterization and revegetation of bauxite residues(Red mud)[J]. Environmental Science and Pollution Research, 2016, 23: 1120.
[9] 李艳军,张浩,韩跃新,等.赤泥资源化回收利用研究进展[J].金属矿山,2021(4):1.(LI Y J, ZHANG H, HAN Y X, et al. Research progress of red mud resource recycling and utilization[J]. Metal Mine, 2021(4): 1.)
[10] 胡凯旋.赤泥堆场污染物对地下水环境的影响研究[J].水资源开发与管理,2019(12):44.(HU K X. Study on the impact of contaminants in red mud dumps on the groundwater environment[J].Water Resources Development and Management, 2019(12):44.)
[11] NARALA G R, RAO B, REDDY K R.Chemical analysis procedures for determining the dispersion behaviour of red mud[J]. Recycled Waste Mater, 2019,32: 19.
[12] ZHANG J Z, LIU S J, YAO Z Y, et al.Environmental aspects and pavement properties of red mud waste as the replacement of mineral filler in asphalt mixture[J]. Construction and Building Materials, 2018, 180:605.
[13] 张金喜,丁博,党海笑. 碱激发赤泥胶凝材料性能及其应用可行性研究[J]. 公路工程,2022,47(4):1.(ZHANG J X, DING B, DANG H X. Feasibility study on the properties of alkali-inspired red mud cementitious materials and their applications[J].Highway Engineering, 2022,47(4):1.)
[14] 薛生国,吴雪娥,黄玲,等.赤泥土壤化处置技术研究进展[J].矿山工程,2015,3(2):13.(XUE S G,WU X E,HUANG L, et al. Research progress of red mud soil disposal technology[J].Mine Engineering, 2015,3(2):13.)
[15] 陈丽苹,李勇超,黄河,等.改性及固定化赤泥去除矿山废水中Mn(Ⅱ)的应用及机理研究[J].化学工业与工程,2021,38(5):2.(CHEN L P, LI Y C, HUANG H, et al. Application and mechanism of modified and immobilized red mud for the removal of Mn(II) from mine wastewater[J]. Chemical Industry and Engineering, 2021,38(5):2.)
[16] 胡广艳.赤泥的弱酸浸出脱碱及综合利用研究[J].矿产保护与利用,2021(1):132.(HU G Y. Research on weak acid leaching dealkalization and comprehensive utilization of red mud[J]. Conservation and Utilization of Mineral Resources, 2021(1):132.)
[17] DAVRIS P, BALOMENOS E, PANIAS D, et al.Selective leaching of rare earth elements from bauxite residue(red mud), using a functionalized hydrophobic ionic liquid[J] Hydrometallurgy, 2016, 164: 125.
[18] 王尚杰夫, 金会心, 雷二帅,等. 赤泥、粉煤灰和磷石膏配碳碱性调控共烧结回收铁铝[J]. 中国冶金, 2023, 33(4): 119.(WANG S J F, JIN H X, LEI E S,et al. Recovery of iron and aluminum from red mud, fly ash and phosphogypsum by co-sintering under alkaline control of carbon addition[J]. China Metallurgy, 2023, 33(4): 119.)
[19] KLAUBER C, GRAFE M, POWER G.Bauxite residue issues Ⅱ. Options for residue utilization[J].Hydrometallurgy, 2011,108:11.
[20] 经文波,李惟宗,吴志宪. 赤泥提铁降低能耗研究[J]. 冶金能源,2022,41(6):9.(JING W B,LI W Z,WU Z X. Study on iron extraction(and energy consumption reduction from red mud[J]. Energy for Metallurgical Industry,2022,41(6):9.)
[21] LIU P, JIANG L, YANG X, et al.Experimental study on iron enrichment performance of red mud by total gravity separation[J]. Light Met, 2017,14(6):6.
[22] LAZOU A, VAN DER EIJK C, TANG K, et al. The utilization of bauxite residue with a calcite-rich bauxite ore in the Pedersen process for iron and alumina extraction[J]. Metallurgical and Materials Transactions B, 2021, 52: 1255.
[23] QU Y, LIAN B, MO B, et al.Bioleaching of heavy metals from red mud using Aspergillus niger[J]. Hydrometallurgy, 2013, 136: 71.
[24] DING W, XIAO J H, PENG Y, et al.Iron extraction from red mud using roasting with sodium salt[J]. Mineral Processing and Extractive Metallurgy Review, 2021, 42(3): 153.
[25] 华福波. 焦炭床内铁水渗碳行为研究[D].武汉:武汉科技大学,2019.(HUA F B.Study on the Carburization Behavior of Molten Iron in Coke Beds[D]. Wuhan:Wuhan University of Science and Technology, 2019.)
[26] MA H B, JIAO K X, ZHANG J L.The influence of basicity and TiO2 on the crystallization behavior of high Ti-bearing slags[J]. Crystengcomm, 2019, 22:361.
[27] 张建良,张冠琪,刘征建,等.山东墨龙HIsmelt工艺生产运行概况及主要特点[J].中国冶金,2018,28(5):37.(ZHANG J L, ZHANG G Q, LIU Z J, et al. Overview and main features of Shandong Molong HIsmelt process production operation[J]. China Metallurgy,2018,28(5):37.)
[28] ZHANG S, HU P, RAO J, et al.Effect of smelting time on vanadium and titanium distribution behavior and slag viscosity in HIsmelt[J]. Metals, 2022, 12(6): 1019.
[29] LI X, ZHANG T, WANG K, et al.Experimental research on vortex melting reduction of high-iron red mud(bauxite residue)[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 109(1): 155.
[30] KONG H, ZHOU T, YANG X, et al.Iron recovery technology of red mud: A review[J]. Energies, 2022, 15(10): 30.
[31] WANG G, ZHANG J, LIU Z, et al.Cracking and microstructure transition of iron ore containing goethite in Fe-C Melt based on the HIsmelt process[J]. Minerals, 2023, 13(3): 448
[32] LU Q, QIE Y N, LIU X J, et al.Effect of hydrogen addition on reduction behavior of iron oxides in gas-injection blast furnace[J]. Thermochimica Acta,2017,64(8):23.
[33] QIE Y N, LU Q, LI J P, et al.Effect of hydrogen addition on reduction kinetics of iron oxides in gas-injection BF[J]. ISIJ International,2017,57(3):19.
[34] DING Y, ZHOU H H, WANG J, et al.Influence of TiO2 on viscosity, phase composition and structure of chromium-containing high-titanium blast furnace slag[J]. Journal of Materials Research and Technology, 2021,12:1615.
[35] PANG J, WANG Z, LI R, et al.Numerical simulation of the HIsmelt main reactor for optimizing heat transfer and combustion at different hot air oxygen contents and daily iron production[J]. Combustion Science and Technology,2023,21(7):1.
[36] 夏征宇,文振国,薛朝云.澳大利亚PB粉矿烧结试验及生产实践[J].钢铁研究,2007(6):1.(XIA Z Y, WEN Z G, XUE C Y. Laboratory test and commercial trial of Australian PB fins in sintering process[J]. Research on Iron and Steel, 2007(6):1.)
[37] 闫光石,刘然,兰臣臣,等.HIsmelt熔融还原工艺的发展及展望[J].河北冶金,2023(8):7.(YAN G S, LIU R, LAN C C, et al. Development and prospect of HIsmelt melt reduction process[J]. Hebei Metallurgy,2023(8):7.)
[38] 谢洪恩,朱凤湘,胡鹏,等.攀钢高炉不同炉料相互作用机理试验研究[J].钢铁钒钛,2023,44(1):119.(XIE H E, ZHU F X, HU P, et al. Research on the interaction mechanism between different burden for blast furnace of Pangang[J].Iron Steel Vanadium Titanium, 2023,44(1):119.)
[39] 庞正德,吕学伟,严志明,等.超高TiO2高炉渣黏度及熔化性温度[J].钢铁,2020,55(8):181.(PANG Z D, LÜ X W, YAN Z M, et al. Viscosity and free running temperature of ultra-high TiO2 bearing furnace slag[J].Iron and Steel, 2020,55(8):181.)
[40] 赵永彬,张建良,宁晓钧,等.低钛高炉渣中Ti(C,N)形成的研究[J].钢铁钒钛,2014,35(1):79.(ZHAO Y B, ZHANG J L, NING X J, et al. Study on the formation of Ti(C,N) in low TiO2 content blast furnace slag[J]. Iron Steel Vanadium Titanium, 2014,35(1):79.)
[41] DING Z H, ZHANG T H, QIU G B, et al.Preparation of micro‐crystal stones from molten titanium slag by "one‐step" cooling method[J]. International Journal of Applied Ceramic Technology, 2023,26(1):21.
[42] 朱二涛,卢建光,李福民,等.添加剂对含钛高炉渣黏度及钙钛矿相析出行为的影响[J].钢铁钒钛,2016,37(6):91.(ZHU E T, LU J G, LI F M, et al. Influence of Additive on viscosity and perovskite precipitation of titania bearing blast furnace slag[J]. Iron Steel Vanadium Titanium, 2016,37(6):91.)

基金

国家自然科学基金资助项目(52104328); 河北省重点研发计划资助项目(22374003D); 河北省自然科学基金资助项目(E2021209023)

PDF(1445 KB)

81

Accesses

0

Citation

Detail

段落导航
相关文章

/