超高强带钢冷轧及平整过程表面粗糙度协同控制工艺

王立萍, 周新福, 吴朋徽, 张冀, 李学通

钢铁 ›› 2024, Vol. 59 ›› Issue (3) : 129-136.

PDF(1207 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月27日 星期日
PDF(1207 KB)
钢铁 ›› 2024, Vol. 59 ›› Issue (3) : 129-136. DOI: 10.13228/j.boyuan.issn0449-749x.20230605
压力加工

超高强带钢冷轧及平整过程表面粗糙度协同控制工艺

  • 王立萍1, 周新福1, 吴朋徽1, 张冀2, 李学通2,3
作者信息 +

Collaborative control of surface roughness during cold rolling and leveling of ultra-high-strength strips

  • 王立萍1, 周新福1, 吴朋徽1, 张冀2, 李学通2,3
Author information +
文章历史 +

摘要

超高强带钢强度高、硬度大、平整轧制过程中伸长率小,因此工作辊压印能力弱,即轧辊粗糙度压印率较小而带钢表面粗糙度遗传率大,同时来料带钢表面粗糙度没有得到精准控制,最终导致成品带钢表面粗糙度难以达标。首先,充分考虑超高强带钢的冷轧及平整轧制特点,分析了带钢伸长率、工作辊表面粗糙度及来料表面粗糙度对超高强带钢表面粗糙度的影响。其次,提出超高强带钢冷轧机组与平整机组轧制过程表面粗糙度协同控制策略,通过设定冷轧机组第4机架与第5机架工作辊表面粗糙度完成对平整来料表面粗糙度的控制,进一步设定平整机组工作辊表面粗糙度范围,通过调整带钢伸长率的大小,建立以超高强带钢成品表面粗糙度控制精度为目标的冷轧及平整机组协同控制技术模型。最后,将控制技术应用到国内某冷轧与平整机组4种典型规格的超高强带钢实际生产过程中。工艺结果表明,平整机组来料表面粗糙度与控制标准的偏差降低了0.1 μm,满足平整机组对来料表面粗糙度的要求,同时,成品带钢表面粗糙度控制精度达到了90%以上,粗糙度波动值降到0.06 μm以下,有效地提升了平整机组对超高强带钢表面粗糙度的控制能力,具有进一步推广应用的价值。

Abstract

Ultra-high-strength steel has high strength, hardness, and small elongation in the process of flat rolling, so the working rolls have weak imprinting ability, i.e., the imprinting rate of roll roughness is small and the heredity of strip surface roughness is large, and at the same time, the surface roughness of incoming strips is not accurately controlled, which ultimately results in the difficulty of the finished strips in reaching the standard of surface roughness. Firstly, the influence of strip elongation, work roll surface roughness and incoming material surface roughness on the surface roughness of ultra-high-strength strip is analyzed by taking full consideration of the characteristics of cold continuous rolling and flat rolling of ultra-high-strength strip. Secondly, a cooperative control strategy of surface roughness in the rolling process of cold rolling unit and leveling unit of ultra-high-strength strip steel is proposed, in which the surface roughness of work rolls in the 4th and 5th racks of cold rolling unit is set to complete the control of surface roughness of the incoming material for leveling, and the range of surface roughness of work rolls in the leveling unit is set to establish the control precision of surface roughness of the finished product of ultra-high-strength strip steel with the target of the strip steel elongation. By adjusting the strip elongation rate, the cooperative control technology model of cold rolling and leveling unit is established to control the surface roughness of finished ultra-high-strength strip steel. Finally, the control technology is applied to the actual production process of four typical specifications of ultra-high-strength strip steel in a domestic cold rolling and leveling unit. The process results show that the deviation of the incoming surface roughness of the leveling unit from the control standard is reduced by 0.1 micron, which meets the requirements of the leveling unit for the incoming surface roughness, and at the same time, the surface roughness control accuracy of the finished strip reaches more than 90%, and the fluctuation value of the roughness is reduced to less than 0.06 micron, which effectively enhances the ability of the leveling unit for the control of the surface roughness of ultra-high-strength strips, and is valuable to further popularize the application of this technique.

关键词

超高强钢 / 冷连轧机组 / 平整机组 / 工作辊 / 表面粗糙度 / 协同控制

Key words

ultra-high strength steel / cold rolling unit / leveling unit / work roller / surface roughness / collaborative control

图表

引用本文

导出引用
王立萍, 周新福, 吴朋徽, . 超高强带钢冷轧及平整过程表面粗糙度协同控制工艺[J]. 钢铁, 2024, 59(3): 129-136 https://doi.org/10.13228/j.boyuan.issn0449-749x.20230605
WANG Liping, ZHOU Xinfu, WU Penghui, et al. Collaborative control of surface roughness during cold rolling and leveling of ultra-high-strength strips[J]. Iron and Steel, 2024, 59(3): 129-136 https://doi.org/10.13228/j.boyuan.issn0449-749x.20230605

参考文献

[1] 王新东,李建新,吝章国,等. 河钢集团汽车板产品研发与技术创新[J]. 钢铁,2017,52(8):70.(WANG X D,LI J X,LIN Z G,et al. Product development and technology innovation of automotive sheet in Hesteel Group[J]. Iron and Steel,2017,52(8):70.)
[2] 刘建辉,王少英. 基于RVE汽车用TRIP钢变形过程亚稳组织演变分析[J]. 塑性工程学报,2020,27(8):136.(LIU J H,WANG S Y. Analysis of metastable structure evolution in deformation process based on RVE for automotive TRIP steel[J]. Journal of Plasticity Engineering,2020,27(8):136.)
[3] 赵征志,陈伟健,高鹏飞,等. 先进高强度汽车用钢研究进展及展望[J]. 钢铁研究学报,2020,32(12):1059.(ZHAO Z Z,CHEN W J,GAO P F,et al.Progress and perspective of advanced high strength automotive steel[J]. Journal of Iron and Steel Research,2020,32(12):1059.)
[4] 秦大伟,陈海朋,李世声,等.鞍钢1 500 mm冷轧平整机组延伸率控制技术[J]. 鞍钢技术,2009(4):51.(QIN D W,CHEN H P,LI S S,et al. Technology for controlling elongation on 1 500 mm cold rolled skin pass mill in Angang[J]. Angang Technology,2009(4):51.)
[5] 李建中,厉英. 冷轧薄钢板表面镀锡/镀铬技术[M]. 北京:科学出版社,2016.(LI J Z,LI Y.Cold-rolled Thin Steel Plate Surface Tinning/Chrome Plating Technology[M]. Beijing:Science Press,2016.)
[6] 胡万通,崔梦雨,陈静,等. 薄硬料平整轧制过程工艺润滑制度综合优化方法[J]. 塑性工程学报,2022,29(4):65.(HU W T,CUI M Y,CHEN J,et al. Comprehensive optimization method of process lubrication system in temper rolling process of thin and hard material[J]. Journal of Plasticity Engineering,2022,29(4):65.)
[7] 吴越,张清东,刘军,等. 带钢冷轧机工作辊表面粗糙度实测研究[J]. 机械工程学报,2003,39(11):90.(WU Y,ZHANG Q D,LIU J,et al. Test and statistical research of surface roughness of work roll in cold tandem mills[J]. Journal of Mechanical Engineering,2003,39(11):90.)
[8] WANG W R, HUA M, WEI X C.Friction behavior of SUS 304 metastable austenitic stainless steel sheet against DC 53 die under the condition of friction coupling plastic deformation[J]. Wear,2011, 271(7/8): 1166.
[9] 阳燕林,秦宗慧,汪峰,等. 带钢平整过程中粗糙度复制的有限元分析[J]. 塑性工程学报,2016,23(3):113.(YANG Y L,QIN Z H,WANG F,et al. Roughness transfer in skin-pass rolling by using FE method[J]. Journal of Plasticity Engineering,2016,23(3):113.)
[10] 白振华,王骏飞. 冷连轧机成品板面粗糙度控制技术的研究[J]. 钢铁,2006,41(11):46.(BAI Z H,WANG J F. Control technique for surface roughness of strip in cold tandem rolling[J]. Iron and Steel,2006,41(11):46.)
[11] 陈金山,李长生,曹勇. 轧辊粗糙度对不锈钢板带表面和工艺参数的影响[J]. 机械工程学报,2013,49(4):30.(CHEN J S,LI C S,CAO Y. Effects of roll roughness on surface and process parameters for stainless-steel strip[J]. Journal of Mechanical Engineering,2013,49(4):30.)
[12] 马兵智,齐春雨,娄德诚,等. 镀锌板光整过程表面粗糙度控制技术[J]. 钢铁,2019,54(10):91.(MA B Z,QI C Y,LOU D C,et al. Surface roughness control technology of galvanized sheet skin-pass rolling process[J]. Iron and Steel,2019,54(10):91.)
[13] KIJIMA H.Influence of roll radius on roughness transfer in skin-pass rolling of steel strip[J]. Journal of Materials Processing Technology, 2014, 214(5): 1111.
[14] SHI J Y, MCELWAIN D L S, DOMANTI S A. Some plastic deformation modes for indentation of half space by a rigid body with serrated surface as a model of roughness transfer in metal forming[J]. Journal of Engineering Materials and Technology, Transactions of the ASME, 2002, 124(2): 146.
[15] 吴彬,张清东,张晓峰. 粗糙表面镀锡基板连退平整轧制过程表面控制[J]. 中国冶金,2012,22(9):51.(WU B,ZHANG Q D,ZHANG X F. Surface control of rough TMBP in temper mill rolling of continuous annealing unit[J]. China Metallurgy,2012,22(9):51.)
[16] 李显,周明科,郭宏海,等. 超低粗糙度高强滑轨钢生产研究与实践[J]. 中国冶金,2021,31(5):118.(LI X,ZHOU M K,GUO H H,et al. Research and practice on production of ultra-low roughness and high strength slide rail steel[J]. China Metallurgy,2021,31(5):118.)
[17] 谢晓莹,朱浩阳,张银霞. 刀具磨损对GH4169加工表面完整性的影响[J]. 钢铁,2023,58(8):195.(XIE X Y,ZHU H Y,ZHANG Y X. Influence of tool wear on machining surface integrity of GH4169[J]. Iron and Steel,2023,58(8):195.)
[18] 刘云峰,彭兴东. 冷轧MR T-5钢镀锡原板表面条状色差的产生原因与控制[J]. 上海金属,2021,43(4):27.(LIU Y F,PENG X D. Cause and control for linear chromatism on cold-rolled MR T-5 steel uncoated tinplate base[J]. Shanghai Metals,2021,43(4):27.)
[19] 周庆田,白振华,王骏飞. 冷连轧过程板面粗糙度模型及其应用的研究[J]. 中国机械工程,2007,18(14):1743.(ZHOU Q T,BAI Z H,WANG J F.Research and application of strip surface roughness model about tandem cold mill[J]. China Mechanical Engineering,2007,18(14):1743.)
[20] 刘超智, 李鹏, 雷彤, 等. 双机湿平整工艺润滑对带钢表面粗糙度的影响及其控制研究[J].塑性工程学报, 2020, 27(5): 149.(LIU C Z, LI P, LEI T, et al. Study on effect of lubrication on surface roughness of strip and its control in double-stand wet temper process[J]. Journal of Plasticity Engineering, 2020, 27(5): 149.)
[21] 于孟,张清东,李瑞,等. R2级表面镀锡基板平整轧制过程表面粗糙度控制[J]. 钢铁,2010,45(12):44.(YU M,ZHANG Q D,LI R,et al. Control of surface roughness for R2 grade tin mill black plate in two-stand temper mill rolling[J]. Iron and Steel,2010,45(12):44.)
[22] 张晓峰,李瑞,张勃洋,等. 平整轧制过程中带钢表面形貌的生成模型[J]. 机械工程学报,2013,49(14):38.(ZHANG X F,LI R,ZHANG B Y,et al. Model for the generation of surface topography in steel strip temper rolling[J]. Journal of Mechanical Engineering,2013,49(14):38.)
[23] LIU Z G, GAO X H, XIONG M, et al.Role of hot rolling procedure and solution treatment process on microstructure, strength and cryogenic toughness of high manganese austenitic steel[J]. Materials Science and Engineering A, 2021, 807: 140881.
[24] 闫磊,齐春雨,孙建华,等. 连退平整机支撑辊剥落分析及辊形优化[J]. 中国冶金,2023,33(7):124.(YAN L,QI C Y,SUN J H,et al. Spalling analysis and roll shape optimization of support roll for continuous annealing and temper mill[J]. China Metallurgy,2023,33(7):124.)
[25] 刘亚星,顾清,张文军,等. 超高强钢冷轧过程轧制力计算的改进模型[J]. 钢铁,2021,56(10):108.(LIU Y X,GU Q,ZHANG W J,et al. Improved model for calculating rolling load of ultra-high strength steel in cold rolling process[J]. Iron and Steel,2021,56(10):108.)
[26] SACHIN P, SIBASIS S, GOUTAM M.Failure analysis of weld joint of high strength quality steel sheets in cold rolling mill[J]. Engineering Failure Analysis, 2019, 103: 392.
[27] 王文广,徐芳,李兴波,等. 热连轧高速钢轧辊对产品表面质量和板形控制的影响[J]. 中国冶金,2022,32(2):97.(WANG W G,XU F,LI X B,et al. Influence of HSS roll on product surface quality and shape control in hot strip rolling[J]. China Metallurgy,2022,32(2):97.)
[28] 刘亚星,顾清,钱承,等. 冷轧超高强钢平直度与断面形状前馈控制技术[J]. 中国机械工程,2021,32(24):2981.(LIU Y X,GU Q,QIAN C,et al.Feedforward control technology for flatness and sectional shape of ultra-high strength steel in six-stand tandem cold mill[J]. China Mechanical Engineering,2021,32(24):2981.)
[29] 杜文慧,李秀军,穆海玲,等. 平整工艺对冷轧带钢表面性能的影响[J]. 上海金属,2014,36(5):49.(DU W H,LI X J,MU H L,et al. Effects of temper rolling technology on the surface characteristics of cold rolled strips[J]. Shanghai Metals,2014,36(5):49.)
[30] 渠福泉,李旭,张宇峰,等. 冷轧工作辊热凸度及其对板形影响[J]. 中国冶金,2022,32(4):84.(QU F Q,LI X,ZHANG Y F,et al. Thermal crown of cold rolling work roll and its effect on strip shape[J]. China Metallurgy,2022,32(4):84.)
[35] 白振华,刘宏民,李秀军,等. 平整轧制工艺模型[M]. 北京:冶金工业出版社,2010.(BAI Z H,LIU H M,LI X J,et al.Flat rolling Process Model[M]. Beijing:Metallurgical Industry Press,2010.)

基金

辽宁省教育厅高等学校基本资助项目(LJKZZ20220040); 中央引导地方科技发展资金资助项目(236Z1024G); 河北省高等学校科学技术研究资助项目(CXY2024018)

PDF(1207 KB)

67

Accesses

0

Citation

Detail

段落导航
相关文章

/