铁焦添加量和装料方式对高炉综合炉料熔滴性能的影响

鲍继伟, 储满生, 唐珏, 张立峰

钢铁 ›› 2024, Vol. 59 ›› Issue (7) : 9-26.

PDF(29007 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月31日 星期四
PDF(29007 KB)
钢铁 ›› 2024, Vol. 59 ›› Issue (7) : 9-26. DOI: 10.13228/j.boyuan.issn0449-749x.20230645
原料与炼铁

铁焦添加量和装料方式对高炉综合炉料熔滴性能的影响

  • 鲍继伟1, 储满生2,3, 唐珏2,4,5, 张立峰2,4,5
作者信息 +

Influence of addition amount and charging method of iron coke on softening-melting-dropping properties of blast furnace mixed burdens

  • 鲍继伟1, 储满生2,3, 唐珏2,4,5, 张立峰2,4,5
Author information +
文章历史 +

摘要

在“碳达峰”“碳中和”背景下,高炉炼铁是钢铁产业实现双碳目标的重要环节。复合铁焦是能够实现高炉低碳冶炼的新炉料,铁焦对综合炉料熔滴性能以及高炉应用铁焦低碳冶炼至关重要。系统研究了不同铁焦添加量和装料方式条件下,高炉综合炉料熔滴性能的演变。此外,通过快速冷却试验对综合炉料不同冶炼阶段还原、软熔、渣铁滴落和料层结构演变行为进行了探讨和分析,揭示了铁焦对高炉综合炉料熔滴性能的影响机制。结果表明,含铁炉料中掺入铁焦对综合炉料熔滴性能的改善效果明显。高炉使用铁焦适宜的添加量为20%~30%,混合装料是铁焦适宜的装料方式。与未添加铁焦情况相比,此铁焦添加条件下的综合炉料软化温度区间由136 ℃增加至197 ℃,熔化温度区间由171 ℃降低至152 ℃,软熔带位置降低;渣铁滴落率由59.1%提高至78.7%;料层最大压差由39.5 kPa降低至3.6 kPa,S值(高炉综合炉料软熔过程的特征值)由3 616.1 kPa·℃降低至276.6 kPa·℃。通过分析和讨论,添加铁焦能够提高综合炉料熔滴性能的机理,铁焦添加量的增加以及铁焦与含铁炉料采取混合装料方式,均能增加铁焦在含铁炉料中的弥散分布程度,加强铁焦与含铁炉料的紧密接触,从而加强铁焦对含铁炉料的还原促进作用、调整优化炉渣成分而降低炉渣黏度的作用、促进金属铁渗碳以及支撑和间隔炉料作用,进而显著改善综合炉料的软熔、滴落和透气性能。

Abstract

In the context of "carbon peaking and carbon neutrality", blast furnace (BF) ironmaking is an important link in achieving the "carbon peaking and carbon neutrality" goal in the steel industry. Iron coke is a new material that can achieve low-carbon smelting in BF. The impact of iron coke on the softening-melting-dropping performance of the BF mixed burdens is crucial for the application of iron coke in low-carbon BF smelting. The softening-melting-dropping properties evolution of BF mixed burdens under different iron coke addition amounts and charging methods have been systematically studied. Furthermore, the rapid cooling experiment has been conducted to explore and analyze the reduction, softening-melting, slag-iron dripping and material layer structure evolution behavior of BF mixed burdens at different smelting stages, and the influence mechanism of iron coke on the softening-melting-dropping performance of BF mixed burdens has been revealed. The results indicate that the addition of iron coke among iron-bearing burdens has a significant improvement effect on the softening-melting-dropping properties of BF mixed burdens. 20%-30% is the appropriate addition amount of iron coke used for BF smelting, and mixed charging is the appropriate charging method for iron coke. Compared with the situation that without adding iron coke, the softening interval of mixed burdens under the above optimization condition is increased from 136 ℃ to 197 ℃, the melting temperature interval is decreased from 171 ℃ to 152 ℃, the position of cohesive zone is relatively low; the dripping rate of slag and iron is improved from 59.1% to 78.7%; the maximum pressure drop of burden bed is decreased from 39.5 kPa to 3.6 kPa, and the S value is reduced from 3 616.1 kPa·℃ to 276.6 kPa·℃. Through analysis and discussion, the mechanism of adding iron coke to improve the softening-melting-dropping properties of BF mixed burdens is obtained. The increase in the addition amount of iron coke and the adoption of a mixed charging method between iron coke and iron-bearing burdens both can increase the dispersion distribution of iron coke among iron-bearing burdens and strengthen the close contact between iron coke and iron-bearing burdens. The above effects will strengthen the reduction promotion effect of iron coke on iron-bearing burdens, adjust and optimize the slag composition to reduce the viscosity of slag, promote metallic iron carburization, and support and interval the iron-bearing burdens. This can significantly improve the softening-melting-dropping properties of BF mixed burdens.

关键词

铁焦 / 添加量 / 装料方式 / 高炉 / 综合炉料 / 熔滴性能

Key words

iron coke / addition amount / charging method / blast furnace / mixed burdens / softening-melting-dropping properties

图表

引用本文

导出引用
鲍继伟, 储满生, 唐珏, . 铁焦添加量和装料方式对高炉综合炉料熔滴性能的影响[J]. 钢铁, 2024, 59(7): 9-26 https://doi.org/10.13228/j.boyuan.issn0449-749x.20230645
BAO Jiwei, CHU Mansheng, TANG Jue, et al. Influence of addition amount and charging method of iron coke on softening-melting-dropping properties of blast furnace mixed burdens[J]. Iron and Steel, 2024, 59(7): 9-26 https://doi.org/10.13228/j.boyuan.issn0449-749x.20230645

参考文献

[1] BAO J W, CHU M S, LIU Z G, et al.Evolution behavior and mechanism of iron carbon agglomerates under simulated blast furnace smelting conditions[J]. Journal of Iron and Steel Research International, 2023, 30(9): 1714.
[2] WANG H T, CHU M S, ZHAO W, et al.Influence of iron ore addition on metallurgical reaction behavior of iron coke hot briquette[J]. Metallurgical and Materials Transactions B, 2019, 50(2): 324.
[3] ZHANG Z L, MENG J L, GUO L, et al.Numerical study of the reduction process in an oxygen blast furnace[J]. Metallurgical and Materials Transactions B, 2016, 47(1): 467.
[4] XU W Q, CAO W J, ZHU T Y, et al.Material flow analysis of CO2 emissions from blast furnace and basic oxygen furnace steelmaking systems in China[J]. Steel Research International, 2015, 86(9): 1063.
[5] JIN P, JIANG Z Y, BAO C, et al.The energy consumption and carbon emission of the integrated steel mill with oxygen blast furnace[J]. Resources Conservation and Recycling, 2017, 117: 58.
[6] MENG F C, SHAO L, ZOU Z S, et al.Match study between coke reactivity and iron-ore reducibility in the blast furnace[J]. Journal of Materials and Metallurgy, 2020, 19(4): 253.
[7] NATIO M, OKAMATO A, YAMAGUCHI K, et al.Improvement of blast furnace reaction efficiency by use of high reactivity coke[J]. Tetsu-to-Hagané, 2001, 87(5): 357.
[8] NAITO M, OKAMOTO A, YAMAGUCHI K, et al.Improvement of blast furnace reaction efficiency by temperature control of thermal reserve zone[J]. Nippon Steel Technical Report, 2006, 94: 103.
[9] NOMURA S, HIGUCHI K, KUNITOMO K, et al.Reaction behavior of formed iron coke and its effect on decreasing thermal reserve zone temperature in blast furnace[J]. ISIJ International, 2010, 50(10): 1388.
[10] NAITO M, NOMURA S, KATO K.Development of production and utilization technology of coke with high strength and high reactivity[J]. Tetsu-to-Hagané, 2010, 96(5): 201.
[11] ARIYAMA T.Perspective toward long-term global goal for carbon dioxide mitigation in steel industry[J]. Tetsu-to-Hagané, 2019, 105(6): 567.
[12] SURESH A, PANDA A, DOMINIC M, et al.Utilisation of low-grade raw materials for preparation of reactive catalysed-coke for blast furnace application[J]. Ironmaking and Steelmaking, 2019, 46(5): 491.
[13] WANG H T, CHU M S, WANG Z H, et al.Research on the post-reaction strength of iron coke hot briquette under different conditions[J]. JOM, 2018, 70(10): 1929.
[14] WANG H T, ZHAO W, CHU M S, et al.Effects of coal and iron ore blending on metallurgical properties of iron coke hot briquette[J]. Powder Technology, 2018, 328: 318.
[15] XU R S, ZHENG H, WANG W, et al.Influence of iron minerals on the volume, strength, and CO2 gasification of ferro-coke[J]. Energy and Fuels, 2020, 32(12): 12118.
[16] YIN C, QIU S X, ZHANG S F, et al. Strength degradation mechanism of iron coke prepared by mixed coal and Fe2O3[J/OL]. Journal of Analytical and Applied Pyrolysis, 2020-9-30. DOI: 10.1016/j.jaap.2020.104897.
[17] 程向明, 毕学工, 史世庄, 等. 铁焦与铁矿石混装对高炉初渣形成的影响[J]. 钢铁, 2014, 49(8): 9.(CHENG X M, BI X G, SHI S Z, et al. Effect of ferro-coke and iron ores mixing charging on primary slag formation in blast furnace[J]. Iron and Steel, 2014, 49(8): 9.)
[18] WANG H T, CHU M S, ZHAO W, et al.Fundamental research on iron coke hot briquette: A new type burden used in blast furnace[J]. Ironmaking and Steelmaking, 2016, 43(8): 571.
[19] 王宏涛, 储满生, 赵伟, 等. 热压铁焦对高炉综合炉料熔滴性能的影响[J]. 东北大学学报(自然科学版), 2016, 37(8): 1108.(WANG H T, CHU M S, ZHAO W, et al.Effect of iron coke hot briquette on softening-melting and dripping properties of blast furnace mixed burden[J]. Journal of Northeastern University(Natural Science), 2016, 37(8): 1108.)
[20] CHEN Z M, YE S X, GENG S H, et al.Softening and melting performance of mixed burden under the simulated hydrogen-rich blast furnace atmosphere[J]. Ironmaking and Steelmaking, 2023, 50(5): 538.
[21] XIAO Y Y, ZHU K, YE S X, et al.Hydrogen on softening-melting and slag forming behavior under the operation of blast furnace with iron coke charging[J]. International Journal of Hydrogen Energy, 2022, 47(73): 31129.
[22] BAO J W, CHU M S, WANG H T, et al.Evolution characteristics and influence mechanism of binder addition on metallurgical properties of iron carbon agglomerates[J]. Metallurgical and Materials Transactions B, 2020, 51(6): 2785.
[23] BAO J W, CHU M S, HAN D, et al.Influences of coal tar pitch on metallurgical properties of iron carbon agglomerates[J]. Steel Research International, 2019, 90(12): 1.
[24] 鲍继伟, 储满生, 柳政根, 等. 炭化工艺参数对铁焦冶金性能的影响[J]. 钢铁研究学报, 2020, 32(7): 532.(BAO J W, CHU M S, LIU Z G, et al. Effect of carbonization process parameters on metallurgical properties of iron coke[J]. Journal of Iron and Steel Research, 2020, 32(7): 532.)
[25] BAO J W, CHU M S, LIU Z G, et al.Effect of iron carbon agglomerates on isothermal reduction of pellets with different reducibility[J]. Steel Research International, 2021, 93(4): 1.
[26] 储满生. 钢铁冶金原燃料及辅助材料[M]. 北京: 冶金工业出版社, 2010 .(CHU M S. Iron and Steel Metallurgical Raw Materials and Auxiliary Materials[M]. Beijing: Metallurgical Industry Press, 2010 .)
[27] 栾世伟. 地质地球化学热力学[M]. 成都: 成都地质学院, 1982 .(LUAN S W. Geochemical Thermodynamics of Geology[M]. Chengdu: Chengdu Institute of Geology, 1982 .)
[28] 范晓慧. 铁矿烧结优化配矿原理与技术[M]. 北京: 冶金工业出版社, 2013 .(FAN X H. Principle and Technology of Optimizing Iron Ore Blending in Iron Ore Sintering[M]. Beijing: Metallurgical Industry Press, 2013 .)
[29] 赵俊学, 李林波, 李晓明, 等. 冶金原理[M]. 北京: 冶金工业出版社, 2012 .(ZHAO J X, LI L B, LI X M, et al. Metallurgical Principles[M]. Beijing: Metallurgical Industry Press, 2012 .)
[30] 沈上越, 李珍. 矿物岩石材料工艺学[M]. 武汉: 中国地质大学出版社, 2005 .(SHEN S Y, LI Z . Technology of Mineral and Rock Materials[M]. Wuhan: China University of Geosciences Press, 2005 .)
[31] 邵国有. 硅酸盐岩相学[M]. 武汉: 武汉工业大学出版社, 1991.(SHAO G Y.Silicate Petrography[M]. Wuhan: Wuhan Industrial University Press, 1991 .)

基金

国家自然科学基金-NSFC-辽宁联合基金资助项目(U1808212); 辽宁省“兴辽英才计划”资助项目(XLYC1902118)

PDF(29007 KB)

96

Accesses

0

Citation

Detail

段落导航
相关文章

/