传统的高炉渣处理方法为水淬法,但水淬法存在很多弊端,如大量余热资源未有效回收利用、水资源大量浪费、冷却过程中产生H2S和SO2等污染物污染环境,为了克服该方法带来的弊端,采用干式粒化法对高炉熔渣进行破碎粒化,在传统气淬喷吹工艺基础上加入水雾化,对高炉熔渣进行强化破碎,从而显著提高破碎粒化率,提升高炉渣利用附加值。通过研究不同喷吹工艺参数(不同气淬压力、不同喷嘴结构、不同气水比)对高炉熔渣破碎粒化效果(粒径分布、成珠率、球形度)的影响,获得最佳粒化工艺参数。研究结果表明,不同喷吹工艺参数(不同气淬压力、不同喷嘴结构、不同气水比)下渣珠粒径均基本呈正态分布,粒径大小基本集中在0.40~2.36 mm。同时,增大气淬压力和选用气水混合的9孔喷嘴以及增加喷水量均能够有效强化高炉渣破碎,提升成珠率,成珠率最高为85.3%。但是随着压力的增加,成珠率并不是一味增加,超过0.30 MPa后,成珠率基本保持不变;压力越大,得到的小粒径渣珠越多,而且透明度高,形状也规则;选用直接喷吹气体的拉瓦尔喷嘴和先喷气再与水混合的T型喷嘴,粒化效果均较差;在喷水量小于喷气量时,随着喷水量的增加成珠率呈逐渐增加的趋势,同时渣珠球形度较好,形状较规则;当喷水量超过喷气量后,成珠率有所减少,但减少的趋势较缓,这为高炉渣高附加值利用提供了理论参考。
Abstract
The traditional blast-furnace slag treatment method is water quenching method, but there are many drawbacks of the method, such as, a large amount of waste heat resources are not effectively recycled, water resources are wasted;H2S, SO2 and other pollutants produced in the cooling process pollute the environment. In order to overcome the disadvantages brought by the traditional method, dry granulation method is used to break and granulate the blast furnace slag. On the basis of the traditional air quenching process, water atomization is added to strengthen to break the blast furnace slag, so as to significantly improve the granulation rate and enhance the high-added value of slag. The effects of different injection process parameters (different gas quenching pressures, different nozzle structures, different air-water ratios) on the granulation effect(particle size distribution, bead formation rate, sphericity) of blast furnace slag are studied, and the best injection process parameters are obtained. The results show that the particle size distribution is basically normal, and the particle size is basically concentrated in the range of 0.40-2.36 mm under different process parameters(different air quenching pressures, different nozzle structures, different air-water ratios). At the same time, increase the air quenching pressure and choose the nine-hole nozzle with evenly mixed air-water is more conducive to the slag crushing and granulation, which can obviously enhance the beads formation rates and the highest beads formation rate is 85.3%. However, with the increase of pressure, the beads formation rates are not a blind increase. the beads formation rates basically remains unchanged more than 0.3 MPa. The greater the pressure, the more smaller the slag beads particle size, the higher the transparency, and the more regular the slag beads shape. Lavar nozzle with directly injecting air and T-type nozzle with injecting air firstly and then mixed with water have poorer granulation effect. When the water amount is less than the air amount, the beads formation rate gradually increases with the increase of the water amount. While when the water amount is greater than the air amount, the beads formation rate decreases slightly with a slow decreasing trend, which providing theoretical reference for the high value-added utilization of blast-furnace slag.
关键词
高炉渣 /
干式粒化 /
粒径分布 /
成珠率 /
喷吹
{{custom_keyword}} /
Key words
blast furnace slag /
dry granulation /
particle size distribution /
bead formation rate /
injection
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 康月,刘超,张玉柱. 高炉渣作为气淬喷吹原料的可行性分析[J]. 中国冶金,2021,31(5):127.(KANG Y,LIU C,ZHANG Y Z. Feasibility analysis of blast furnace slag as gas quenching raw material[J]. China Metallurgy,2021,31(5):127.)
[2] 胡景兰,秦跃林,凌清峰,等.固体热载体法回收高炉渣余热的研究进展[J].冶金能源,2022,41(3):3.(HU J L,QIN Y L,LING Q F,et al.Recovery waste heat from blast furnace slag with solid heat carrier method[J].Energy for Metallurgical Industry,2022,41(3):3.)
[3] 康月,张玉柱,刘超,等. 矿物组成对高炉渣破碎粒化效果的影响机理[J]. 钢铁,2023,58(10):172.(KANG Y,ZHANG Y Z,LIU C,et al. Mechanism of mineral composition on effect of blast furnace slag granulation[J]. Iron and Steel,2023,58(10):172.)
[4] 万新宇,严定鎏,高建军,等. 高炉渣干法轮式粒化半工业试验[J]. 中国冶金,2020,30(5): 83.(WAN X Y,YAN D L,GAO J J,et al. Semi-industrial test on dry wheeled granulation for blast furnace slag[J]. China Metallurgy,2020,30(5): 83.)
[5] 张士理,赵明,马萍,等. 转杯离心粒化熔融高炉渣数值模拟[J]. 钢铁,2020,55(7):127.(ZHANG S L,ZHAO M,MA P,et al. Numerical modeling of centrifugal granulation of molten blast furnace slag using spinning cups[J]. Iron and Steel,2020,55(7):127.)
[6] SALIHI A B,ARPITHA D,RAJASEKARAN C.Suitability study of processed granulated blast furnace slag (PGBS) as fine aggregate replacement in mortar exposed to the marine environment[J]. Materials Today:Proceedings,2023,88:1.
[7] 徐朝成, 陈光, 包向军, 等. 冷热双混辊压法高炉熔渣破碎试验[J]. 中国冶金, 2022, 32(9): 120.(XU C C, CHEN G, BAO X J, et al. Experiment of blast furnace slag crushing by hot and cold double-mixed rolling method[J]. China Metallurgy, 2022, 32(9): 120.)
[8] 刘帅,张宗旺,张建良,等. 高钛型高炉渣钛提取工艺研究现状及发展展望[J]. 中国冶金,2020,30(3):1.(LIU S,ZHANG Z W,ZHANG J L,et al. Research status and development prospect of titanium extraction from high titanium blast furnace slag[J]. China Metallurgy,2020,30(3):1.)
[9] 刘荣江,刘丽娜. 含钛高炉渣的综合利用[J]. 山西冶金,2023,46(8):80.(LIU R J,LIU L N. Comprehensive utilization of titanium-containing blast-furnace slag[J]. Shanxi Metallurgy,2023,46(8):80.)
[10] 李世明,刘露,张维巍. 高炉炉渣处理技术及发展趋势[J]. 鞍钢技术,2023(2):8.(LI S M,LIU L,ZHANG W W. Treatment technology for blast furnace slag and its development trend[J]. Angang Technology,2023(2):8.)
[11] 胡祥东,郭英,张道明,等.离心粒化的黄磷渣颗粒直径尺寸的研究[J].冶金能源,2023,42(1):31.(HU X D,GUO Y,ZHANG D M,et al.Study on the particle diameter of centrifugally granulated yellow phosphorus slag[J].Energy for Metallurgical Industry,2023,42(1):31.)
[12] 段闫超,邢宏伟,孙瑞靖,等. 高炉熔渣高值资源化的现状及展望[J]. 世界有色金属,2022(17):7.(DUAN Y C,XING H W,SUN R J,et al. Status and prospect of high-value resource utilization of blast furnace slag[J]. World Nonferrous Metals,2022(17):7.)
[13] GAO J,FENG Y H,FENG D L,et al.Granulation performance by hybrid centrifugal-air blast technique for treatment of liquid slag[J]. Powder Technology,2021,392:204.
[14] 王子兵,刘跃,张玉柱,等. 高炉熔渣气淬粒化热量回收实验研究[J]. 钢铁钒钛,2018,39(4):93.(WANG Z B,LIU Y,ZHANG Y Z,et al. Experimental study on heat recovery of the process of gas blowing for blast furnace slag[J]. Iron Steel Vanadium Titanium,2018,39(4):93.)
[15] YU L H,ZHANG Y Y,LIU H L,et al.Comprehensive utilization of blast furnace slag,municipal sludge and kaolin clay in building brick manufacture:Crystalline transformation morphology observation and property assessment[J]. Cement and Concrete Composites,2023(145):105.
[16] 康月, 刘超, 张玉柱, 等. 气淬高炉熔渣冷却凝固相变特性仿真[J]. 中国冶金, 2022, 32(5): 116.(KANG Y, LIU C, ZHANG Y Z, et al. Phase transition simulation of air quenching blast furnace slag during cooling and solidification[J]. China Metallurgy, 2022, 32(5): 116.)
[17] 康月,刘超,张玉柱,等. 气淬法粒化高炉渣实验研究[J]. 东北大学学报(自然科学版),2020,41(2):212.(KANG Y,LIU C,ZHANG Y Z,et al. Experimental study on granulation of blast furnace slag by gas quenching[J]. Journal of Northeastern University(Natural Science),2020,41(2):212.)
[18] 万新宇,严定鎏,高建军,等. 高炉渣气-水混淬干法粒化及余热回收扩大试验研究[J]. 炼铁,2020,39(4):8.(WAN X Y,YAN D L,GAO J J,et al. Experimental study on air-water mixed quenching process in dry type BF slag granulation and high efficient waste heat recovery[J]. Ironmaking,2020,39(4):8.)
[19] 刘晓宏,温治,孙瑞靖,等. 高炉渣气雾粒化性能实验研究[J]. 武汉理工大学学报,2023,45(11):38.(LIU X H,WEN Z,SUN R J,et al. Experimental research on granulation performance of blast furnace slag by gas and water mist quenching[J]. Journal of Wuhan University of Technology,2023,45(11):38.)
[20] KANG Y,LIU C,ZHANG Y Z,et al.Influence of crystallization behavior of gas quenching blast furnace slag on the preparation of amorphous slag beads[J]. Crystals. 2020, 10(1):30.
[21] 刘晓宏,温治,杜宇航,等. 气淬粒化熔渣液膜破碎过程研究[J]. 中南大学学报(自然科学版),2022,53(8):2851.(LIU X H,WEN Z,DU Y H,et al.Study on liquid film breaking process of gas quenched granulated slag[J]. Journal of Central South University(Science and Technology),2022,53(8):2851.)
[22] WANG L L,ZHANG Y Z,LONG Y,et al.Experimental investigation on granulation characteristics and waste heat recovery of molten slag in gas quenching dry granulation technique[J]. Applied Thermal Engineering,2020,184:116.
[23] 杜宇航,刘晓宏,温治,等. 高炉渣液滴破碎过程数值模拟[J]. 材料与冶金学报,2023,22(1):23.(DU Y H,LIU X H,WEN Z,et al. Numerical simulation of the breakup of high temperature blast furnace slag droplet[J]. Journal of Materials and Metallurgy,2023,22(1):23.)
[24] 李清泉,王吉南,薛明伦. 超音速气动雾化制粉机理的实验研究及分析[J]. 力学学报,1992,24(6):654.(LI Q Q,WANG J N,XUE M L. Experimental study and analysis of the mechanism of supersonic pneumatic atomization powder production[J]. Theoretical and Applied Mechanics,1992,24(6):654.)
[25] WANG D,LING X,PENG H,et al.High-temperature analogy experimental investigation on dry granulating characteristic of rotating disk for waste heat utilization of molten slag[J]. Applied Thermal Engineering:Design,Processes,Equipment,Economics,2017,125:846.
[26] LIU J,YU Q,DUAN W,et al.Experimental investigation on ligament formation for molten slag granulation[J]. Applied Thermal Engineering,2014,73(1):888.
[27] KANG Y,LIU C,ZHANG Y Z,et al.Granulation mechanism of gas quenching blast furnace slag with different basicities[J]. Ironmaking and Steelmaking,2020,47(10):1206.
[28] 张军. 柴油机喷嘴内空化效应的机理及射流破碎特征的研究[D]. 天津:天津大学,2010.(ZHANG J.Invsetigations of Cavitation in Nozzle and Characteristic of Breakup for Diesel Spray[D]. Tianjin:Tianjin University,2010.)
[29] 严春吉,解茂昭. 气动力对空心圆柱形液体射流分裂与雾化特性的影响[J]. 大连海事大学学报,1998(2):84.(YAN C J,XIE M Z. Effect of aerodynamic force on splitting and atomization characteristics of hollow cylindrical liquid jets[J]. Joural of Dalian Maritime University,1998(2):84.)
[30] KLAR E,FESKO J W.Gas and water atomization[J]. Amercian Society for Metals,1984,25:1287.
[31] WANG L L,ZHANG Y Z,LONG Y.Numerical investigation of breakup process of molten blast furnace slag through air quenching dry granulation technique[J]. Journal of Iron and Steel Research International,2021,28(1):10.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
河北省重点研发计划资助项目(22373805D); 河北省自然科学基金资助项目(E2021209079)
{{custom_fund}}