转炉炉口的微差压调控对提升煤气回收品质具有重要意义。为了合理调控炉口压力,减少吸入空气量,提升回收煤气热值,结合转炉炉内化学反应、历史吹氧数据和神经网络算法,建立了炉气预测模型,模型精度可达96.3%;根据微差压与风机转速、环缝开度、烟罩高度、烟罩开度以及炉气量之间的关系,建立了炉口微差压平衡模型,并耦合炉气预测模型构成微差压预测双驱动模型。炉气预测模型提供预测炉气量,微差压平衡模型提供微差压平衡关系式,两者结合设定的风机转速、环缝开度、烟罩高度,耦合成为微差压预测双驱动模型。当预测的微差压超过了设定值,对风机转速、环缝开度、烟罩开度、烟罩高度等影响因素进行调节,控制微差压在合理的范围内。通过实际生产数据分析,双驱动模型预测与调控结果与设定的微差压平均值相对误差为2.7%,吹炼期间炉口压力的平均值由13.42 Pa降低到4.88 Pa,平均每炉吸入空气量由原来的40.26 km3减少为14.64 km3。煤气热值(标准态)从7 422 kJ/m3增加到8 812 kJ/m3,提高了18.73%,表明该模型可实现精准预测和调控微差压,改善以往预测方法时间滞后的缺点,为提升转炉煤气热值提供了有效的方法。
Abstract
The micro-differential pressure control at the converter mouth is of great significance to improving the quality of gas recovery. In order to reasonably regulate the furnace mouth pressure, reduce the amount of air inhalation, and increase the calorific value of the recovered gas, a converter gas prediction model was established based on chemical reactions in the converter, historical oxygen blowing data, and neural network algorithms. The accuracy of the model can reach 96.3%. Based on the relationship between the micro-differential pressure and the fan speed, annular seam opening, hood height, hood opening and converter gas volume, a converter mouth micro-differential pressure balance model was established, and coupled with the converter gas prediction model to form a micro-differential pressure prediction dual drive model. The converter gas prediction model provides the predicted converter gas volume, and the micro-differential pressure balance model provides the micro-differential pressure balance relationship. The two are combined with the set fan speed, ring gap opening, and hood height to form a micro-differential pressure prediction dual-drive model. When the predicted differential pressure exceeds the set value, the fan speed, ring gap opening, hood opening, hood height and other influencing factors are adjusted to control the differential pressure within a reasonable range. Through the analysis of actual production data, the relative error between the prediction and control results of the dual-drive model and the set average value of micro-differential pressure is 2.7%. The average converter mouth pressure during blowing is reduced from 13.42 Pa to 4.88 Pa. The average suction per furnace The air volume is reduced from the original 40.26 km3 to 14.64 km3. The calorific value (standard state) of coal gas increased from 7 422 kJ/m3 to 8 812 kJ/m3, an increase of 18.73%, indicating that the model can accurately predict and regulate the micro-differential pressure, improve the shortcomings of the time lag of previous prediction methods, and provide a way to improve converter gas calorific value provides an effective method.
关键词
微差压 /
转炉煤气 /
预测与调控 /
双驱动模型 /
转炉炉口
{{custom_keyword}} /
Key words
micro differential pressure /
converter gas /
prediction and regulation /
dual-driven model /
converter mouth
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 上海第一炼钢厂. 采用微差压控制提高转炉煤气回收水平[J]. 炼钢, 1985(增刊1): 101.(Shanghai First Steelmaking Plant. Using micro differential pressure control to improve the recovery level of converter gas[J]. Steelmaking, 1985(s1): 101.)
[2] 张运生, 王林. 酒钢120 t转炉煤气回收及炉口微差压自动控制[J]. 金属世界, 2010(3): 34.(ZHANG Y S, WANG L. Gas recovery and automatic control of micro differential pressure at the mouth of the 120 t converter at Jiuquan Iron and Steel Co., Ltd.[J]. Metal World, 2010(3): 34.)
[3] FANG T, DING X.Research on metrological characteristic of micro-differential pressure sensor in draw resistance device[J]. Advanced Materials Research, 2012, 630: 231.
[4] 屈立里. 湘钢氧气转炉烟气回收工艺的控制要素[J]. 矿冶工程, 1998(1): 47.(QU L L. Control elements of oxygen converter flue gas recovery process at Xianggang[J]. Mining and Metallurgy Metallurgical Engineering, 1998(1): 47.)
[5] 乐嘉仿. 转炉煤气回收工程改造[J]. 江西冶金, 1988(2): 23.(LE J F. Transformation of converter gas recovery engineering[J]. Jiangxi Metallurgy, 1988(2): 23.)
[6] 俞波. 提高转炉煤气回收率的综合措施[J]. 中国冶金, 2003,13(10): 17.(YU B.Comprehensive measures to improve the recovery rate of converter gas[J]. China Metallurgy, 2003, 13(10): 17.)
[7] 肖萍, 舒刚, 文福. 中冶南方新型转炉煤气湿法环缝除尘技术[C]//2013年全国冶金能源环保生产技术会论文集. 北京: 中国金属学会, 2013: 3.(XIAO P, SHU G, WEN F. Wet seam dust removal technology for converter gas in MCC South China[C]//Proceedings of the 2013 National Metallurgical Energy and Environmental Protection Production Technology Conference. Beijing: The Chinese Society for Metals, 2013:3.)
[8] 达吉. 提高第一炼钢厂转炉煤气回收率的几种方法[J]. 冶金与材料, 2021, 41(6): 167.(DA J. Several methods to improve the recovery rate of converter gas in the first steelmaking plant[J]. Metallurgy and Materials, 2021, 41(6): 167.)
[9] 刘荫绵. 炉口微差压技术在转炉煤气回收中的应用[J]. 钢铁, 1994, 29(5): 60.(LIU Y M. The application of furnace mouth micro differential pressure technology in converter gas recovery[J]. Iron and Steel, 1994, 29(5): 60.)
[10] 杜一文. 转炉烟气净化回收系统的设计与实现[D]. 沈阳: 东北大学, 2005.(DU Y W.Design and Implementation of Converter Flue Gas Purification and Recovery System[D]. Shenyang: Northeastern University, 2005.)
[11] 马荣芳, 孙弘, 尹凤. 转炉烟气净化及煤气回收系统中炉口微差压的自动控制[J]. 电气传动, 2006(5): 53.(MA R F, SUN H, YIN F. Automatic control of micro differential pressure at the furnace inlet in converter flue gas purification and gas recovery systems[J]. Electrical Transmission Electric Drive, 2006(5): 53.)
[12] 张旭. 转炉烟气净化回收系统优化与工程实践[D]. 秦皇岛: 燕山大学, 2012.(ZHANG X.Optimization and Engineering Practice of Converter Flue Gas Purification and Recovery System[D]. Qinhuangdao: Yanshan University, 2012.)
[13] 艾合买提·依米提. 转炉煤气回收控制系统中滑模控制法的应用[J]. 科技视界, 2013(19): 49.(AI H M T·Y M T. The application of sliding mode control method in converter gas recovery control system[J]. Science and Technology Vision, 2013(19): 49.)
[14] 邢建厂, 李勇, 孟庆喜. 基于改进简化粒子群算法的转炉微差压优化控制[J]. 工业控制计算机, 2018, 31(12): 8.(XING J C,LI Y,MENG Q X. Optimization control of converter micro differential pressure based on improved and simplified particle swarm optimization algorithm[J]. Industrial Control Computer, 2018, 31(12): 8.)
[15] 曹天明. 马钢转炉煤气回收OG系统[J]. 能源技术, 2002(4): 165.(CAO T M.OG system for gas recovery in Ma Steel converter[J]. Energy Technology, 2002(4): 165.)
[16] 刘斌, 杨海军, 李征. 稳定转炉炉口微差压的研究与应用[J]. 世界有色金属, 2016(6): 114.(LIU B, YANG H J, LI Z. Research and application of stable converter mouth micro differential pressure[J]. World Nonferrous Metal, 2016(6): 114.)
[17] 刘加军, 曹汝磊, 冯贵武. 微差压技术在转炉炼钢湿法除尘中的应用研究[J]. 冶金设备, 2017(增刊1): 52.(LIU J J, CAO R L, FENG G W. Application research of micro differential pressure technology in wet dust removal of converter steelmaking[J]. Metallurgical Equipment, 2017(s1): 52.)
[18] 李春香. 提高不锈钢转炉煤气回收热值和回收量的实践[J]. 冶金动力, 2020(6): 20.(LI C X. Practice of improving the heat value and recovery capacity of stainless steel converter gas recovery[J]. Metallurgical Power, 2020(6): 20.)
[19] 陈光, 胡鹏, 包向军, 等. 基于柜位预测的转炉煤气热值优化模型[J]. 钢铁, 2024, 59(3): 197.(CHEN G, HU P, BAO X J, et al. Optimization model for converter gas calorific value based on cabinet prediction[J]. Iron and Steel, 2024, 59(3): 197.)
[20] 杨黔, 程斯祥, 周鹏, 等. 基于机理和XGBoost算法的LF精炼钢水成分预测模型[J]. 自动化应用, 2024, 65(2): 5.(YANG Q, CHENG S X, ZHOU P, et al. A prediction model for LF refined steel composition based on mechanism and XGBoost algorithm[J]. Automation Application, 2024, 65(2): 5.)
[21] 包向军, 陈凯, 郦秀萍, 等. 基于深度学习的转炉煤气发生量预测模型[J]. 钢铁, 2024, 59(1): 67.(BAO X J, CHEN K, LI X P, et al. A prediction model for converter gas production based on deep learning[J]. Iron and Steel, 2024, 59(1): 67.)
[22] WANG B, FAN S D, XIONG T, et al. Comparison of cutter suction dredger slurry concentration soft measurement method based on the mechanism and data dual-driven model[C]//International Conference on Offshore Mechanics and Arctic Engineering. New York: American Society of Mechanical Engineers, 2022, 85901: V05BT06A024.
[23] 刘远洋, 贺东风, 冯凯, 等. 基于机理和数据驱动的转炉输入-输出混合模型[J]. 有色金属科学与工程, 2018, 9(2): 13.(LIU Y Y, HE D F, FENG K, et al. Mechanism and data-driven input-output hybrid model for converter[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 13.)
[24] XIONG H B, XIONG Q S, ZHOU B C, et al.Field vibration evaluation and dynamics estimation of a super high-rise building under typhoon conditions: Data-model dual driven[J]. Journal of Civil Structural Health Monitoring, 2022, 13(1): 235.
[25] 蒙康, 滕伟, 彭迪康, 等. 运行机理与数据双驱动的风电齿轮箱系统故障预警[J]. 中国机械工程, 2023, 34(12): 1476.(MENG K, TENG W, PENG D K, et al.Fault warning of wind power gearbox system driven by both operating mechanism and data[J]. China Mechanical Engineering, 2023, 34(12): 1476.)
[26] HAN C J, TONG J S, MA T, et al.Rutting prediction model for semi-rigid base asphalt pavement based on a data-mechanistic dual driven method[J]. International Journal of Pavement Engineering, 2023, 24(1): 2173753.
[27] 张瑛, 康永哲, 段彬, 等. 基于数据-模型双驱动的电池组容量在线估计[J/OL]. 机械工程学报, 1-12 [2024-03-13].http://kns.cnki.net/kcms/detail/11.2187.TH.20230428.1431.020.html.(ZHANG Y, KANG Y Z, DUAN B, et al. Online estimation of battery pack capacity based on data model dual drive[J/OL]. Journal of Mechanical Engineering, 1-12 [2024-03-13].http://kns.cnki.net/kcms/detail/11.2187.TH.20230428.1431.020.html.)
[28] 陈昊. 模型数据双驱动的高精度算法及其应用[D]. 郑州: 河南大学, 2023.(CHEN H.A High-Precision Algorithm Driven by Model Data and Its Application[D]. Zhengzhou: Henan University, 2023.)
[29] 李强, 潘敏, 成波. 模型与数据双驱动的失眠脑电alpha节律研究[J]. 西北大学学报(自然科学版), 2023, 53(3): 359.(LI Q, PAN M, CHEN B. A study on the alpha rhythm of insomnia EEG driven by model and data[J]. Journal of Northwest University(Natural Science), 2023, 53(3): 359.)
[30] 李俊兵, 曾囿钧, 曾孝平, 等. 基于模型数据双驱动的短波MUF短期预测网络[J]. 通信学报, 2023, 44(12): 99.(LI J B, ZENG Y J, ZENG X P, et al. A short wave MUF short term prediction network based on model data dual drive[J]. Journal of Communications Journal on Communications, 2023, 44(12): 99.)
[31] 马春生. 转炉烟气净化与回收工艺[M]. 北京: 冶金工业出版社, 1985.(MA C S.Converter Flue Gas Purification and Recovery Process[M]. Beijing: Metallurgical Industry Press, 1985.)
[32] WANG X, YU Z, XI P, et al.An energy consumption prediction LSTM model of metallurgy enterprises[J]. IOP Conference Series Earth and Environmental Science, 2020, 495(1): 012014.
[33] 李江昀, 杨志方, 郑俊锋, 等. 深度学习技术在钢铁工业中的应用[J]. 钢铁, 2021, 56(9): 43.(LI J Y, YANG Z F, ZHENG J F, et al. The application of deep learning technology in the steel industry[J]. Iron and Steel, 2021, 56(9): 43.)
[34] 包向军, 翁思浩, 陈光, 等. 基于时序模型的高炉煤气发生量多步预测对比[J]. 钢铁, 2022, 57(9): 166.(BAO X J, WENG S H, CHEN G, et al. Comparison of multi-step prediction of blast converter gas generation based on time series models[J]. Iron and Steel, 2022, 57(9): 166.)
[35] 李志刚, 张鑫. CNN-GRU模型预测高炉煤气产生量[J]. 机械设计与制造, 2022(4): 69.(LI Z G, ZHANG X. The CNN GRU model predicts the production of blast converter gas[J]. Mechanical Design and Manufacturing, 2022(4): 69.)
[36] HOU X, GE F Z, CHEN D B, et al.Temporal distribution-based prediction strategy for dynamic multi-objective optimization assisted by GRU neural network[J]. Information Sciences, 2023(649): 119627.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家重点研发计划资助项目(2020YFB1711101); 安徽高校自然科学研究资助项目(KJ2021A0411)
{{custom_fund}}