利用生物质能实现低碳炼铁的研究进展

何志军, 盛宏沅, 高立华, 刘吉辉

钢铁 ›› 2025, Vol. 60 ›› Issue (1) : 1-14.

欢迎访问《钢铁》官方网站!今天是 2025年7月26日 星期六
钢铁 ›› 2025, Vol. 60 ›› Issue (1) : 1-14. DOI: 10.13228/j.boyuan.issn0449-749x.20240416
综合论述

利用生物质能实现低碳炼铁的研究进展

  • 何志军1,2, 盛宏沅1,2, 高立华1,2, 刘吉辉1,2
作者信息 +

Research progress on utilizing biomass energy to achieve low-carbon ironmaking

  • 何志军1,2, 盛宏沅1,2, 高立华1,2, 刘吉辉1,2
Author information +
文章历史 +

摘要

钢铁行业中化石能源的消耗加剧了对环境的压力,铁前工序是整个钢铁行业节能减排的重要环节,在中国“碳达峰”和“碳中和”的目标下,寻求和使用可代替化石能源的绿色可再生能源是钢铁工业发展的必经之路。生物质作为绿色的碳中性资源,具有分布广泛、低污染性和可再生等特点。生物质能源应用于炼铁生产可以有力地发挥出其节能减排的作用,对钢铁行业碳消耗具有重要意义。在讨论生物质资源分布、预处理方式、生物质利用方法以及生物质能理化性质的基础上,系统论述了天然生物质、生物质炭和生物质衍生物在直接还原铁、高炉喷吹、生物质焦炭、生物质球团、生物质烧结等方面的研究现状。首先,生物质可作为反应物直接添加到球团中进行生物质铁矿球团的还原,也可利用生物质热解气化产生的合成气对铁矿石进行还原。其次,未来可进一步改进生物质的处理手段来优化生物质烧结矿和生物质球团矿的质量,通过改善原料粒度和原料配比等来优化生物质用于高炉喷吹或现有炉料制备工艺。基于生物质自身的理化特性,其作为铁前工序能源应用时还需要进一步开展相关基础性研究工作,针对大型高炉开发的生物质复合造块铁矿原料的破碎强度和冶金性能需要进一步探索,同时,加强行业间合作开发出高强度、高反应性的符合高炉生产的生物质复合炉料是未来的研究方向之一。

Abstract

The consumption of fossil energy in the steel industry intensifies environmental pressures, with the ironmaking process serving as a critical link in energy conservation and emission reduction throughout the sector. In the context of China's goals for "carbon peaking" and "carbon neutrality", the exploration and utilization of green renewable energy sources as substitutes for fossil fuels is an essential pathway for the development of the steel industry. Biomass, recognized as a green, carbon-neutral resource, possesses characteristics such as widely distributed, low pollution, and renewability. The application of biomass energy in ironmaking can significantly contribute to energy savings and emission reductions, playing a crucial role in mitigating carbon consumption in the steel industry. The distribution of biomass resources, pretreatment methods, utilization approaches, and the physical and chemical properties of biomass were systematically discussed, while the current research status of natural biomass, biomass char, and biomass derivatives was discoursed in direct iron reduction, blast furnace injection, biomass coke, biomass pellets, and biomass sintering. Firstly, it is noted that biomass can be directly added as a reactant to pellets for the reduction of biomass iron ore pellets, and that syngas generated from biomass pyrolysis and gasification can also be used for the reduction of iron ore. Furthermore, future efforts could focus on improving biomass processing methods to optimize the quality of biomass sinter and biomass pellets by enhancing raw material particle size and ratios, thereby optimizing the use of biomass for blast furnace injection or existing charge preparation processes. Given the inherent physicochemical properties of biomass, further fundamental research is necessary for its application as energy in the ironmaking process. Specifically, exploration and practical studies on the crushing strength and metallurgical properties of biomass composite iron ore raw materials developed for large blast furnaces are needed. Additionally, strengthening inter-industry collaboration to develop high-strength, highly reactive biomass composite materials suitable for blast furnace production represents one of the future research directions.

关键词

低碳 / 炼铁 / 节能减排 / 生物质能 / 生物质复合炉料 / 生物质衍生物 / 烧结 / 球团

Key words

low carbon / ironmaking / energy conservation and emission reduction / biomass energy / biomass composite furnace charge / biomass derivative / sinter / pellet

图表

引用本文

导出引用
何志军, 盛宏沅, 高立华, . 利用生物质能实现低碳炼铁的研究进展[J]. 钢铁, 2025, 60(1): 1-14 https://doi.org/10.13228/j.boyuan.issn0449-749x.20240416
HE Zhijun, SHENG Hongyuan, GAO Lihua, et al. Research progress on utilizing biomass energy to achieve low-carbon ironmaking[J]. Iron and Steel, 2025, 60(1): 1-14 https://doi.org/10.13228/j.boyuan.issn0449-749x.20240416

参考文献

[1] ZHAO X,MA X W,CHEN B Y,et al.Challenges toward carbon neutrality in China:Strategies and countermeasures[J]. Resources,Conservation and Recycling,2022,176:105959.
[2] WANG Y,GUO C H,CHEN X J,et al.Carbon peak and carbon neutrality in China:Goals,implementation path and prospects[J]. China Geology,2021,4(4):720.
[3] MOUSA E,WANG C,RIESBECK J,et al.Biomass applications in iron and steel industry:An overview of challenges and opportunities[J]. Renewable and Sustainable Energy Reviews,2016,65:1247.
[4] FAN Z Y,FRIEDMANN S F.Low-carbon production of iron and steel:Technology options,economic assessment,and policy[J]. Joule,2021,5(4):829.
[5] LIU Y R,SHEN Y S.Modelling and optimisation of biomass injection in ironmaking blast furnaces[J]. Progress in Energy and Combustion Science,2021,87:100952.
[6] 周冬华,马海鹏. 管理会计视域下的钢铁企业“双碳”转型:困境与路径[J]. 中国管理会计,2022(2):30.(ZHOU D H,MA H P. Management accounting tools and carbon emission reduction of steel companies[J]. China Management Accounting Review,2022(2):30.)
[7] YU S W,HU X,LI L X,et al.Does the development of renewable energy promote carbon reduction? Evidence from Chinese provinces[J]. Journal of Environmental Management,2020,268:110634.
[8] 王刚,张怡,李万超,等. 基于双碳目标的钢铁行业低碳发展路径探析[J]. 金融发展评论,2022(2):17.(WANG G,ZHANG Y,LI W C,et al. Analysis of low-carbon development path of the steel industry based on double-carbon target[J]. Financial Development Review,2022(2):17.)
[9] 李学琴,王志伟,刘鹏,等. "双碳"目标下生物质热化学转化技术路径探讨[J]. 生物质化学工程,2024,58(4):69.(LI X Q,WANG Z W,LIU P,et al. Exploration on the technological path of thermochemical conversion of biomass under the background of carbon peak and carbon neutrality[J]. Biomass Chemical Engineering,2024,58(4):69.)
[10] SAIDUR R,ABDELAZIZ E A,DEMIRBAS A,et al.A review on biomass as a fuel for boilers[J]. Renewable and Sustainable Energy Reviews,2011,15(5):2262.
[11] 黄柱成,姜雄,易凌云,等. 生物质对钒钛磁铁矿还原行为影响及过程强化[J]. 钢铁,2021,56(1):12.(HUANG Z C,JIANG X,YI L Y,et al. Effects of biomass on reduction of vanadium-bearing titanomagnetite and process enhancement[J]. Iron and Steel,2021,56(1):12.)
[12] 马玉升,洪陆阔,周朝刚,等. 生物质用于直接还原工艺研究[J]. 钢铁钒钛,2019,40(4):106.(MA Y S,HONG L K,ZHOU C G,et al. Application of biomass to the direct reduction process[J]. Iron Steel Vanadium Titanium,2019,40(4):106.)
[13] BROTTO J D O,SALLA J D S,DA SILVA J C G,et al. Investigation of the thermal behavior of Pinus wood pellets during torrefaction for application in metallurgical processes[J]. Journal of Materials Research and Technology,2022,19:3749.
[14] ZHOU D,WEI R F,LONG H M,et al.Combustion characteristics and kinetics of different food solid wastes treatment by blast furnace[J]. Renewable Energy,2020,145:530.
[15] WANG C,MELLIN P,LÖVGREN J,et al. Biomass as blast furnace injectant:Considering availability,pretreatment and deployment in the Swedish steel industry[J]. Energy Conversion and Management,2015,102:217.
[16] 李恒,刘晓明,赵喜彬,等. 生物质松木锯末中低温还原高铁拜耳法赤泥[J]. 工程科学学报,2017,39(9):1331.(LI H,LIU X M,ZHAO X B,et al.Medium-low temperature reduction of high-iron Bayer process red mud using biomass pine sawdust[J]. Journal of University of Science and Technology Beijing,2017,39(9):1331.)
[17] 甘文,张硕垚李博,等. 不同碳质还原剂还原Fe3O4特性的动力学分析[J]. 昆明理工大学学报(自然科学版),2020,45(6):21.(GAN W,ZHANG S Y,LI B,et al. Kinetic analysis of Fe3O4 reduction characteristics with different carbonaceous reducing agents[J]. Journal of Kunming University of Science and Technology(Natural Science),2020,45(6):21.)
[18] 黄柱成,金芸芸,易凌云,等. 生物质热解特性及其还原铁精矿研究[J]. 烧结球团,2021,46(3):65.(HUANG Z C,JIN Y Y,YI L Y,et al. Research on biomass pyrolysis characteristics and iron concentrate reduction[J]. Sintering and Pelletizing,2021,46(3):65.)
[19] 郑伟成,CHARLES X U C,魏汝飞,等. 高炉喷吹生物炭研究进展[J]. 钢铁研究学报,2021,33(1):1.(ZHENG W C,CHARLES X U C,WEI R F,et al. Injection of biochar into blast furnace:Progress and prospects[J]. Journal of Iron and Steel Research,2021,33(1):1.)
[20] GONZÁLEZ-GARCÍA S,DIAS A C,CLERMIDY S,et al. Comparative environmental and energy profiles of potential bioenergy production chains in Southern Europe[J]. Journal of Cleaner Production,2014,76:42.
[21] ZHANG L Y,LI Y,ZHANG J,et al.The relationships among energy consumption,economic output and energy intensity of countries at different stage of development[J]. Renewable and Sustainable Energy Reviews,2017,74:258.
[22] DUTTA S,HE M J,XIONG X N,et al.Sustainable management and recycling of food waste anaerobic digestate:A review[J]. Bioresource Technology,2021,341:125915.
[23] GUPTA D,MAHAJANI S M,GARG A.Hydrothermal carbonization of household wet waste:Characterization of hydrochar and process wastewater stream[J]. Bioresource Technology,2021,342:125972.
[24] GONZÁLEZ-ARIAS J,GÓMEZ X,GONZÁLEZ-CASTAÑO M,et al. Insights into the product quality and energy requirements for solid biofuel production:A comparison of hydrothermal carbonization,pyrolysis and torrefaction of olive tree pruning[J]. Energy,2022,238:122022.
[25] 袁骧,邹凡球,但家云,等. 生物质炭化提质制备高炉喷吹燃料的研究[J]. 钢铁研究学报,2024,36(3):328.(YUAN X,ZOU F Q,DAN J Y,et al. Study on preparation of blast furnace injection fuel by biomass carbonization and upgrading[J]. Journal of Iron and Steel Research,2024,36(3):328.)
[26] WANG G W,ZHANG J A,LEE J Y,et al.Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace[J]. Applied Energy,2020,266:114818.
[27] ZHANG W S,WANG C,ZHANG L,et al.Evaluation of the performance of distributed and centralized biomass technologies in rural China[J]. Renewable Energy,2018,125:445.
[28] LI J,WANG R,LI H R,et al.Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment[J]. Applied Energy,2021,285:116494.
[29] ZHANG J,WEI J,GUO C L,et al.The spatial distribution characteristics of the biomass residual potential in China[J]. Journal of Environmental Management,2023,338:117777.
[30] HUANG Y,ZHAO Y J,HAO Y H,et al.A feasibility analysis of distributed power plants from agricultural residues resources gasification in rural China[J]. Biomass and Bioenergy,2019,121:1.
[31] ANTTILA P,VAARIO L M,PULKKINEN P,et al.Availability,supply technology and costs of residual forest biomass for energy:A case study in northern China[J]. Biomass and Bioenergy,2015,83:224.
[32] ZHANG J,ZHANG J M,XING B,et al.Study on the effect of municipal solid landfills on groundwater by combining the models of variable leakage rate,leachate concentration,and contaminant solute transport[J]. Journal of Environmental Management,2021,292:112815.
[33] ZHAO X G,JIANG G W,LI A,et al.Technology,cost,a performance of waste-to-energy incineration industry in China[J]. Renewable and Sustainable Energy Reviews,2016,55:115.
[34] ZHENG L J,SONG J C,LI C Y,et al.Preferential policies promote municipal solid waste(MSW)to energy in China:Current status and prospects[J]. Renewable and Sustainable Energy Reviews,2014,36:135.
[35] CHEN G Y,WANG X T,LI J,et al.Environmental,energy,and economic analysis of integrated treatment of municipal solid waste and sewage sludge:A case study in China[J]. Science of the Total Environment,2019,647:1433.
[36] SLADE R,BAUEN A,GROSS R.Global bioenergy resources[J]. Nature Climate Change,2014,4(2):99.
[37] 国家能源局. 生物能源“十三五”规划(2016—2021年)[M]. 北京: 中国能源出版社, 2016.(National Energy Administration.13th Five-Year Plan (2016—2021) of bioenergy[M]. Beijing:China Energy Press,2016.)
[38] 国家能源局. 为促进生物质能源供暖的发展指导[M]. 北京: 中国能源出版社, 2017.(National Energy Administration.Guidance for promoting the development of bioenergy heating[M]. Beijing:China Energy Press,2017.)
[39] 国家能源局. 北方地区清洁取暖规划(2017—2021年)[M]. 北京: 中国能源出版社, 2017.(National Energy Administration.Plan of clean heating in Northern China(2017—2021)[M]. Beijing:China Energy Press,2017.)
[40] 赵晴云,马若婧,周璐芸,等. 北方农村清洁供暖先行区农业废弃物的生物质能潜力及减排效应评估[J]. 农业资源与环境学报,2023,40(3):667.(ZHAO Q Y,MA R J,ZHOU L Y,et al. Evaluation of energy potential and emission reduction of agricultural waste biomass utilization for clean heating in rural areas of northern China[J]. Journal of Agriculture Resources and Environment,2023,40(3):667.)
[41] 赵阳悦, 赵政通, 陈伯俭. 污泥厌氧消化工艺的碳减排效果分析[J]. 山东化工,2019,48(17):227.(ZHAO Y Y,ZHAO Z T,CHEN B J. Analysis of carbon emission reduction effect of sludge anaerobic digestion process[J]. Shandong Chemical Industry,2019,48(17):227.)
[42] 石清泉,高礼. 电厂生物质燃料碳减排技术创新与应用研究[J]. 清洗世界,2024,40(6):67.(SHI Q Q,GAO L. Research on innovation and application of biomass fuel carbon emission reduction technology in power plant[J]. Cleaning World,2024,40(6):67.)
[43] GLUSHKOV D O,NYASHINA G S,ANAND R,et al.Composition of gas produced from the direct combustion and pyrolysis of biomass[J]. Process Safety and Environmental Protection,2021,156:43.
[44] 宁波,杨帆,聂燕红,等. 槽型分离器在直燃生物质电厂中的应用[J]. 能源与节能,2024(7):31.(NING B,YANG F,NIE Y H,et al. Application of U-beam separators in direct-fired biomass power plants[J]. Energy and Conservation,2024(7):31.)
[45] BHUI B,VAIRAKANNU P,Prospects and issues of integration of co-combustion of solid fuels (coal and biomass) in chemical looping technology[J]. Journal of Environmental Management,2019,231:1241.
[46] VODIČKA M,MICHALIKOVÁ K,HRDLIČKA J,et al. External bed materials for the oxy-fuel combustion of biomass in a bubbling fluidized bed[J]. Journal of Cleaner Production,2021,321:128882.
[47] GUO F H,ZHONG Z P. Experimental studies on combustion of composite biomass pellets in fluidized bed[J]. Science of the Total Environment,2017,599/600:926.
[48] KALINA J.Techno-economic assessment of small-scale integrated biomass gasification dual fuel combined cycle power plant[J]. Energy,2017,141:2499.
[49] PEDROSO D T,MACHIN E B,PROENZA PÉREZ N,et al. Technical assessment of the biomass integrated gasification/gas turbine combined cycle (BIG/GTCC) incorporation in the sugarcane industry[J]. Renewable Energy,2017,114,Part B:464.
[50] RODRIGUES M,FAAIJ A P C,WALTER A. Techno-economic analysis of co-fired biomass integrated gasification/combined cycle systems with inclusion of economies of scale[J]. Energy,2003,28(12):1229.
[51] KUMAR S,CHIEMCHAISRI C,MUDHOO A.Bioreactor landfill technology in municipal solid waste treatment:An overview[J]. Critical Reviews in Biotechnology,2011,31(1):77.
[52] CAI M Y,ZHANG H R,ZHANG Y C,et al.Bioelectrochemical assisted landfill technology for the stabilization and valorization of food waste anaerobic digestate[J]. Bioresource Technology,2022,351:126935.
[53] ZHAO Y,DAMGAARD A,CHRISTENSEN T H.Bioethanol from corn stover:A review and technical assessment of alternative biotechnologies[J]. Progress in Energy and Combustion Science,2018,67:275.
[54] VALENTE I D L,WANCURA J H C,De FREITAS A J,et al. Technology advances in the bioethanol production from eucalyptus wood biomass[J]. Bioenergy Research,2024,17(2):769.
[55] ROY M M,CALDER J,WANG W,et al.Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel,diesel-biodiesel-ethanol,and diesel-biodiesel-diethyl ether blends[J]. Applied Energy,2016,180:52.
[56] WANG Y,LIU H,LEE C F F. Particulate matter emission characteristics of diesel engines with biodiesel or biodiesel blending:A review[J]. Renewable and Sustainable Energy Reviews,2016,64:569.
[57] ZHANG S Q,YANG X,ZHANG H Q,et al.Liquefaction of biomass and upgrading of bio-oil:A review[J]. Molecules,2019,24(12):2250.
[58] RACHEL-TANG D Y,ISLAM A,TAUFIQ-YAP Y H. Bio-oil production via catalytic solvolysis of biomass[J]. RSC Advances,2017,7(13):7820.
[59] AHMAD F B,ZHANG Z Y,DOHERTY W O S,et al. The prospect of microbial oil production and applications from oil palm biomass[J]. Biochemical Engineering Journal,2019,143:9.
[60] DHYANI V,BHASKAR T.A comprehensive review on the pyrolysis of lignocellulosic biomass[J]. Renewable Energy,2018,129:695.
[61] 张自丽. 生物质燃料特性与灰熔融调节技术研究进展[J]. 能源与环境,2024(2):84.(ZHANG Z L. Research progress of biomass fuel characteristics and ash melting regulation technology[J]. Energy and Environment,2024(2):84.)
[62] VASSILEV S V,BAXTER D,ANDERSEN L K,et al.An overview of the organic and inorganic phase composition of biomass[J]. Fuel,2012,94:1.
[63] ALAKANGAS E,HURSKINEN M,LAATIKAINEN-LUNTAMA J,et al.Properties of wood fuels used in Finland[M]. Espoo:VTT Technical Research Centre of Finland,2016.
[64] 刘竹林,蒋友源,寿擎,等. 高炉混合喷吹用生物质燃料可磨性及燃烧性能分析[J]. 中国冶金,2020,30(3):8.(LIU Z L,JIANG Y Y,SHOU Q,et al. Analysis on grindability and combustion performance of biomass fuel for mixed injection of blast furnace[J]. China Metallurgy,2020,30(3):8.)
[65] OLIVEIRA T L,ASSIS P S,LEAL E M,et al.Study of biomass applied to a cogeneration system:A steelmaking industry case[J]. Applied Thermal Engineering,2015,80:269.
[66] WANG G W,ZHANG J L,CHANG W W,et al.Structural features and gasification reactivity of biomass chars pyrolyzed in different atmospheres at high temperature[J]. Energy,2018,147:25.
[67] KUMAR JHA K,KANNAN T T M. Recycling of plastic waste into fuel by pyrolysis:A review[J]. Materials Today:Proceedings,2021,37:3718.
[68] WANG P,ZHANG J A,SHAO Q J,et al.Physicochemical properties evolution of chars from palm kernel shell pyrolysis[J]. Journal of Thermal Analysis and Calorimetry,2018,133(3):1271.
[69] WANG P,WANG G W,ZHANG J A,et al.Co-combustion characteristics and kinetic study of anthracite coal and palm kernel shell char[J]. Applied Thermal Engineering,2018,143:736.
[70] 王朋. 生物质半焦应用于高炉喷吹的基础研究[D]. 北京:北京科技大学,2019.(WANG P.Basic research on application of biomass semi-coke in blast furnace injection[D]. Beijing:University of Science and Technology Beijing,2019.)
[71] 徐润生,何晓霞,张建良,等. 可再生能源实现低碳炼铁的途径探讨[J]. 钢铁研究学报,2024,36(3):275.(XU R S,HE X X,ZHANG J L,et al. Analysis of way for renewable energy to achieve low-carbon ironmaking[J]. Journal of Iron and Steel Research,2024,36(3):275.)
[72] 张云松,庞赟佶,许嘉,等. 微波热解技术在制备生物炭中的应用及研究进展[J/OL]. 材料导报.(2024-07-22)[2024-07-22].http://kns.cnki.net/kcms/detail/50.1078.TB.20240719.1639.002.html.(ZHANG Y S,PANG Y J,XU J,et al. Application and research progress of microwave pyrolysis technology in the preparation of biochar[J/OL]. Materials Reports.(2024-07-22)[2024-07-22].http://kns.cnki.net/kcms/detail/50.1078.TB.20240719.1639.002.html.)
[73] 张万里,刘平,殷广智,等. 核壳基生物质热解炭特性及其改性研究[J]. 太阳能学报,2024,45(6):10.(ZHANG W L,LIU P,YIN G Z,et al. Characteristics and modification of pyrolysis carbon of core-shell based biomass[J]. Acta Energiae Solaris Sinica,2024,45(6):10.)
[74] 李学琴,刘鹏,卢岩,等. 废弃生物质催化热解制富氢燃气:催化剂性能的影响[J]. 燃料化学学报(中英文),2024,52(7):976.(LI X Q,LIU P,LU Y,et al. Catalytic pyrolysis of waste biomass to produce hydrogen-rich gas:Influence of catalyst performance[J]. Journal of Fuel Chemistry and Technology,2024,52(7):976.)
[75] SIKARWAR V S,ZHAO M,CLOUGH P,et al.An overview of advances in biomass gasification[J]. Energy and Environmental Science,2016,9(10):2939.
[76] LEMMENS B,ELSLANDER H,VANDERREYDT I,et al.Assessment of plasma gasification of high caloric waste streams[J]. Waste Management,2007,27(11):1562.
[77] HAN X,ZHANG Y F,YAO D D,et al.Releasing behavior of alkali and alkaline earth metals during biomass gasification[J]. Journal of Fuel Chemistry and Technology,2014,42(7):792.
[78] BASSO D,PATUZZI F,CASTELLO D,et al.Agro-industrial waste to solid biofuel through hydrothermal carbonization[J]. Waste Management,2016,47(Pt A):114.
[79] WAHYUDIONO W,MACHMUDAH S,GOTO M.Utilization of sub and supercritical water reactions in resource recovery of biomass wastes[J]. Engineering Journal,2013,17(1):1.
[80] 陈思思,唐兴颖,任鹏炜,等. 催化剂在生物质水热碳化过程中的应用研究进展[J]. 环境工程,2023,41(4):195.(CHEN S S,TANG X Y,REN P W,et al. Research progress on application of catalysts in hydrothermal carbonization process of biomass[J]. Environmental Engineering,2023,41(4):195.)
[81] HE C,TANG C Y,LI C H,et al.Wet torrefaction of biomass for high quality solid fuel production:A review[J]. Renewable and Sustainable Energy Reviews,2018,91:259.
[82] 钱黎黎,王彦鑫,倪俊,等. 生物质水热炭改性方法及应用研究进展[J]. 煤炭学报,2023,48(6):2279.(QIAN L L,WANG Y X,NI J,et al.Research progress of modification method and application of biomass hydrochar[J]. Journal of China Coal Society,2023,48(6):2279.)
[83] PRAWISUDHA P,NAMIOKA T,YOSHIKAWA K N.Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment[J]. Applied Energy,2012,90(1):298.
[84] CAO L C,YU I K M,LIU Y Y,et al. Lignin valorization for the production of renewable chemicals:State-of-the-art review and future prospects[J]. Bioresource Technology,2018,269:465.
[85] LU Y,WEI Z,WANG Y,et al.Research on the characteristics and kinetics of direct reduction of limonite ore fines under CO atmosphere in a rotary drum reactor[J]. Powder Technology,2019,352:240.
[86] GUO D B,CUI B H,CHEN Z H,et al.Biomass enhances the reduction of oxidized pellets with carbon monoxide[J]. Bioresource Technology,2021,331:124973.
[87] YUAN P,SHEN B X,DUAN D P,et al.Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process[J]. Energy,2017,141:472.
[88] 汪琦. 铁矿含碳球团技术[M]. 北京:冶金工业出版社,2005.(WANG Q.Technology of carbonaceous pellets in iron ore[M]. Beijing:Metallurgical Industry Press,2005.)
[89] LUO S Y,ZHOU Y M,YI C J.Two-step direct reduction of iron ore pellets by utilization of biomass:Effects of preheating temperature,pellet size and composition[J]. Journal of Renewable and Sustainable Energy,2013,5(6):063114.
[90] SRIVASTAVA U,KAWATRA S K,EISELE T C.Production of pig iron by utilizing biomass as a reducing agent[J]. International Journal of Mineral Processing,2013,119:51.
[91] OOI T C,ARIES E,EWAN B C R,et al. The study of sunflower seed husks as a fuel in the iron ore sintering process[J]. Minerals Engineering,2008,21(2):167.
[92] GAN M,FAN X H,CHEN X L.Reduction of pollutant emission in iron ore sintering process by applying biomass fuels[J]. ISIJ International,2012,52(9):1574.
[93] FAN X H,JI Z Y,GAN M,et al.Integrated assessment on the characteristics of straw-based fuels and their effects on iron ore sintering performance[J]. Fuel Processing Technology,2016,150:1.
[94] 王浩. 生物质混煤炼焦的实验研究[D]. 武汉:武汉科技大学,2015.(WANG H.Experimental study of biomass and coal co-carbonization[D]. Wuhan:Wuhan University of Science and Technology,2015.)
[95] MONTIANO M G,DÍAZ-FAES E,BARRIOCANAL C,et al. Influence of biomass on metallurgical coke quality[J]. Fuel,2014,116:175.
[96] BAHARIN N S K,KOESOEMADINATA V C,NAKAMURA S,et al. Conversion and characterization of Bio-Coke from abundant biomass waste in Malaysia[J]. Renewable Energy,2020,162:1017.
[97] TUMULURU J S.Effect of pellet die diameter on density and durability of pellets made from high moisture woody and herbaceous biomass[J]. Carbon Resources Conversion,2018,1(1):44.
[98] JUNG S H,OH S J,CHOI G G,et al.Production and characterization of microporous activated carbons and metallurgical bio-coke from waste shell biomass[J]. Journal of Analytical and Applied Pyrolysis,2014,109:123.
[99] SUOPAJÄRVI H,DAHL E,KEMPPAINEN A,et al. Effect of charcoal and Kraft-lignin addition on coke compression strength and reactivity[J]. Energies,2017,10(11):1850.
[100] MOHAMED A R,HAMZAH Z,DAUD M Z M. The effects of holding time and the sweeping nitrogen gas flowrates on the pyrolysis of EFB using a fixed-bed reactor[J]. Procedia Engineering,2013,53:185.
[101] LIU W J,LI W W,JIANG H,et al.Fates of chemical elements in biomass during its pyrolysis[J]. Chemical Reviews,2017,117(9):6367.
[102] TSAI W T,LEE M K,CHANG Y M.Fast pyrolysis of rice husk:Product yields and compositions[J]. Bioresource Technology,2007,98(1):22.
[103] NING X J,LIANG W,WANG G W,et al.Effect of pyrolysis temperature on blast furnace injection performance of biochar[J]. Fuel,2022,313:122648.
[104] GAO Q J,BUDARIN V L,CIEPLIK M,et al.PCDDs,PCDFs and PCNs in products of microwave-assisted pyrolysis of woody biomass:Distribution among solid,liquid and gaseous phases and effects of material composition[J]. Chemosphere,2016,145:193.
[105] WEI R F,CANG D,BAI Y.Reduction characteristics and kinetics of iron oxide by carbon in biomass[J]. Ironmaking and Steelmaking,2016,43(2):144.
[106] 易凌云,黄柱成,姜涛,等. 生物质炭用于铁精矿球团还原过程中黏结的抑制[J]. 中南大学学报(自然科学版),2017,48(12):3141.(YI L Y,HUANG Z C,JIANG T,et al.Application of charcoal in iron ore pellets sticking prevention during reduction process[J]. Journal of Central South University(Science and Technology),2017,48(12):3141.)
[107] SINGH A K,SINHA O P,SINGH R.Author correction:Reduction behavior and kinetics of iron ore-charcoal composite pellets for sustainable ironmaking[J]. Metallurgical and Materials Transactions B,2024,55(3):1966.
[108] HU Q,YAO D D,XIE Y P,et al.Study on intrinsic reaction behavior and kinetics during reduction of iron ore pellets by utilization of biochar[J]. Energy Conversion and Management,2018,158:1.
[109] GAN M,FAN X H,JI Z Y.Application of biomass fuel in iron ore sintering:influencing mechanism and emission reduction[J]. Ironmaking and Steelmaking,2015,42(1):27.
[110] MATHIESON J G,NORGATE T,JAHANSHAHI S,et al.The potential for charcoal to reduce net greenhouse gas emissions from the Australian steel industry[C] //Proceedings of the 6th International Congress on the Science and Technology of Ironmaking. Rio de Jabeiro: Instituto Brasileiro do Aco, 2012:1602.
[111] ZHAO Y Q,SUN T C,ZHAO H Y,et al.Effect of reductant type on the embedding direct reduction of beach titanomagnetiteconcentrate[J]. International Journal of Minerals Metallurgy and Materials,2019,26(2):152.
[112] FAN X H,GAN M,JIANG T,et al.Influence of flux additives on iron ore oxidized pellets[J]. Journal of Central South University of Technology,2010,17(4):732.
[113] WANG C,LARSSON M,LÖVGREN J,et al. Injection of solid biomass products into the blast furnace and its potential effects on an integrated steel plant[J]. Energy Procedia,2014,61:2184.
[114] SUOPAJÄRVI H. Bioreducer use in finnish blast furnace ironmaking: Analysis of CO2 emission reduction potential and mitigation cost[J]. Applied energy,2014,124:82.
[115] MATHIESON J G,ROGERS H,SOMERVILLE M A,et al.Reducing net CO2 emissions using charcoal as a blast furnace tuyereinjectant[J]. ISIJ International,2012,52(8):1489.
[116] MATHIESON J G,ROGERS H,SOMERVILLE M,et al.Use of biomass in the iron and steel industry:An Australian perspective[C] //1st International Conference on Energy Efficiency and CO2 Reduction in the Steel Industry(EECR Steel 2011). Dusseldorf,Germany:China Iron and Steel Association,2011:9.
[117] 蒋友源,郑林,刘竹林,等. 生物质燃料混合喷吹时对燃烧率的影响[J]. 四川冶金,2019,41(4):18.(JIANG Y Y,ZHENG L,LIU Z L,et al. Effect of combustion rate on co-combustion of biomass and coal[J]. Sichuan Metallurgy,2019,41(4):18.)
[118] DONG X Y,WANG Z X,ZHANG J H,et al.Synthesis and characteristics of carbon-based synfuel from biomass and coal powder by synergistic co-carbonization technology[J]. Renewable Energy,2024,227:120458.
[119] WEI R F,LI H M,LIN Y F,et al.Reduction characteristics of iron oxide by the hemicellulose,cellulose,and lignin components of biomass[J]. Energy and Fuels,2020,34(7):8332.
[120] MAZUMDER J,DE LASA H I. Catalytic steam gasification of biomass surrogates:thermodynamics and effect of operating conditions[J]. Chemical Engineering Journal,2016,293:232.
[121] FANG H Y,GAO L,ZHOU X L,et al.Enhanced compressive strength of preheated limonite pellets with biomass-derived binders[J]. Advanced Powder Technology,2023,34(10):104154.
[122] WEI R F,XIANG D W,LONG H M,et al.Reduction of iron oxide by lignin:Characteristics,kinetics and superiority[J]. Energy,2020,197:117203.
[123] FINDORÁK R,LEGEMZA J,FRÖHLICHOVÁ M,et al. New utilization of specific biomass:Lignin in the iron ore sintering process[J]. Metals,2020,10(9):1170.
[124] SUMAN S,YADAV A M,BHUSHAN A,et al.Substitution of coking coal with biochar for thermal and metallurgical utilisation[J]. International Journal of Sustainable Energy,2022,41(11):1778.
[125] WEI R F,FENG S H,LONG H M,et al.Coupled biomass (lignin) gasification and iron ore reduction:A novel approach for biomass conversion and application[J]. Energy,2017,140:406.
[126] YI L Y,ZHANG N,HAO H W,et al.Synergetic conversion laws of biomass and iron ore for syngas and direct reduced iron co-production[J]. Journal of Cleaner Production,2022,363:132387.
[127] GUO D B,ZHU L D,GUO S,et al.Direct reduction of oxidized iron ore pellets using biomass syngas as the reducer[J]. Fuel Processing Technology,2016,148:276.

基金

国家自然科学基金资助项目(52374339,52474359);中国宝武低碳冶金创新基金资助项目(BWLCF202308)

Accesses

Citation

Detail

段落导航
相关文章

/