烧结矿竖冷装置物料流动与气流分布

祁腾飞, 陈国军, 张永杰

钢铁 ›› 2025, Vol. 60 ›› Issue (2) : 51-58.

欢迎访问《钢铁》官方网站!今天是 2025年7月29日 星期二
钢铁 ›› 2025, Vol. 60 ›› Issue (2) : 51-58. DOI: 10.13228/j.boyuan.issn0449-749x.20240461
原料与炼铁

烧结矿竖冷装置物料流动与气流分布

  • 祁腾飞, 陈国军, 张永杰
作者信息 +

Material flow and airflow distribution in sinter vertical cooling device

  • 祁腾飞, 陈国军, 张永杰
Author information +
文章历史 +

摘要

为了研究炉型结构对烧结矿竖冷炉内气固流动的影响,以梅钢竖冷炉单料仓为基础,按10∶1比例缩小搭建了烧结矿竖冷试验装置,同时设计了文丘里炉型。分别从料层平均粒径分布、空隙率分布、运动流型分布以及气流分布角度展开试验研究。结果表明,使用现有炉型,料层平均粒径呈下料点附近较小而边壁区和中间区较大分布,且沿纵向变化不大,因此形成高低粒径通道;空隙率分布与平均粒径分布相近;物料呈U形下降,且中间区和边壁区下移速度差异较大;气体速度呈中间区较小而边壁区较大分布。采用文丘里炉型后,料层沿纵向的粒径分布被打乱,在炉腔中上部,平均粒径呈中间区较大而边壁区较小分布,炉腔下部则相反,整体料层平均粒径从8.3 mm降至7.7 mm,且平均粒径标准差从1.3 mm降至0.7 mm,料层粒径分布波动性更小,相对更加均匀;空隙率分布与平均粒径相反,呈中间区较小而边壁区较大分布,且空隙率范围从0.355~0.392增加至0.363~0.395,空隙率标准差从0.016~0.022降低至0.0135~0.0185,料层空隙率及其分布的均匀性均得以提高;烧结矿排出炉腔时间从300 s降至200 s,中间区和边壁区下移速度差异缩小,整体流系数IMF(mass flow index)从0.60提高至0.76,物料流动均匀性得到改善;气体速度在边壁区较小而在中间区较大,其值从7.5~18.6 m/s增加至8.5~19.3 m/s,其标准差从0.45~2.52 m/s下降至为0.40~1.12 m/s,这有利于缓解边壁效应,增加气体速度分布的均匀性。后续可继续研究文丘里炉型对气固换热的影响,以进一步确定文丘里炉型对烧结矿竖冷炉的改善作用。

Abstract

In order to study the effect of furnace structure on the gas-solid flow in the sinter vertical cooling furnace, a sinter vertical cooling experimental device was built based on the single bin of the Meishan Steel vertical cooling furnace, with a ratio of 10∶1. At the same time, a Venturi furnace was designed. The experiment was conducted from the perspectives of average particle size distribution, voidage distribution, flow pattern distribution, and airflow distribution in the sinter bed. The results show that using the existing furnace type, the average particle size is smaller near the discharge point, while larger in the sidewall and middle areas, and there is little variation along the longitudinal direction, thus forming high and low particle size channels. The distribution of voidage is similar to that of average particle size. The sinter shows a U-shaped descent, and there is a significant difference in the downward movement speed between the middle area and the side wall area. The gas velocity distribution is smaller in the middle area and larger in the sidewall area. After adopting the Venturi furnace type, the particle size distribution along the longitudinal direction is disrupted. In the upper part of the furnace chamber, the average particle size is larger in the middle area and smaller in the sidewall area, while the opposite is true in the lower part of the furnace chamber. The average particle size of the whole bed decreases from 8.3 mm to 7.7 mm, and its standard deviation decreases from 1.3 mm to 0.7 mm, which show the particle size distribution has smaller fluctuation and relatively more uniform. The distribution of voidage is opposite to the average particle size, with smaller in middle area and larger in sidewall area. The range of voidage increases from 0.355-0.392 to 0.363-0.395, and its standard deviation decreases from 0.016-0.022 to 0.0135-0.0185. The uniformity of voidage and its distribution are both improved. The discharge time of sinter from the furnace chamber is reduced from 300 s to 200 s, and the difference in downward movement speed between the middle area and the sidewall area is reduced. The IMF (mass flow index) is increased from 0.60 to 0.76, and the uniformity of sinter flow is improved. The gas velocity is smaller in the sidewall area and larger in the middle area, with values increasing from 7.5-18.6 m/s to 8.5-19.3 m/s. Its standard deviation decreases from 0.45-2.52 m/s to 0.40-1.12 m/s. This is beneficial for alleviating the sidewall effect and increasing the uniformity of gas velocity distribution. Further research can be conducted on the influence of Venturi furnace type on gas-solid heat transfer to further determine the improvement effect of Venturi furnace type on the sinter vertical cooling furnace.

关键词

烧结矿 / 竖冷 / 偏析 / 空隙率 / 气流分布 / 布料方式 / 布风方式 / 粒度组成

Key words

sinter / vertical cooling / segregation / voidage / airflow distribution / fabric method / wind distribution method / grain size composition

图表

引用本文

导出引用
祁腾飞, 陈国军, 张永杰. 烧结矿竖冷装置物料流动与气流分布[J]. 钢铁, 2025, 60(2): 51-58 https://doi.org/10.13228/j.boyuan.issn0449-749x.20240461
QI Tengfei, CHEN Guojun, ZHANG Yongjie. Material flow and airflow distribution in sinter vertical cooling device[J]. Iron and Steel, 2025, 60(2): 51-58 https://doi.org/10.13228/j.boyuan.issn0449-749x.20240461

参考文献

[1] 张永杰,黄军. 钢铁低碳高能效共性难题技术研发与应用[M]. 北京:冶金工业出版社,2019.
(ZHANG Y J,HUANG J.Research and application of common difficult technology of low carbon and high energy efficiency for iron and steel[M]. Beijing:Metallurgical Industry Press,2019.)
[2] 毕传光,孙俊杰. 竖式冷却回收烧结矿显热工艺在梅钢的应用[J]. 烧结球团,2018,43(4):69.
(BI C G,SUN J J. Application of process to recycle sensible heat of sinter using vertical cooling furnace in Meisteel[J]. Sintering and Pelletizing,2018,43(4):69.)
[3] 仲园. 梅钢烧结竖冷炉运行实践[J]. 冶金动力,2021(2):79.
(ZHONG Y. Operation practice of sintering vertical cooling furnace in Meishan Steel[J]. Metallurgical Power,2021(2):79.)
[4] 许相波. 梅钢烧结竖冷炉余热利用方案与生产实践[C]//2019第十届全国能源与热工学术年会论文集. 杭州:中国金属学会,2019:87.
(XU X B. Production practice of recovering steam with sinter shaft cooling in Meishan Steel Plant[C]//Proceedings of the 10th National Conference on Energy and Thermal Engineering. Hangzhou: The Chinese Society for Metals,2019:87.)
[5] TIAN F Y,HUANG L F,FAN L W,et al.Wall effects on the pressure drop in packed beds of irregularly shaped sintered ore particles[J]. Powder Technology,2016,301(11):1284.
[6] FENG J S,ZHANG S,DONG H,et al.Frictional pressure drop characteristics of air flow through sinter bed layer in vertical tank[J]. Powder Technology,2019,344:177.
[7] ZHANG S Z,WEN Z,LIU X L,et al.Experimental study on the permeability and resistance characteristics in the packed bed with the multi-size irregular particle applied in the sinter vertical waste heat recovery technology[J]. Powder Technology,2021,384:304.
[8] 彭岩,王为术,时小宝,等. 烧结矿炉式冷却装置料层阻力试验研究[J]. 烧结球团,2019,44(1):6.
(PENG Y,WANG W S,SHI X B,et al. Experimental study on material bed resistance of furnace type sinter cooling device[J]. Sintering and Pelletizing,2019,44(1):6.)
[9] 李含竹,高建业,冯军胜,等. 烧结矿余热回收竖罐内料层阻力特性实验研究[J]. 钢铁研究学报,2018,30(1):8.
(LI H Z,GAO J Y,FENG J S,et al. Experimental study on resistance characteristics in vertical tank for recovering sinter waste heat[J]. Journal of Iron and Steel Research,2018,30(1):8.)
[10] 张四宗,温治,刘训良,等. 不规则烧结矿余热回收竖罐内气体阻力特性[J]. 中南大学学报(自然科学版),2021,52(6):1963.
(ZHANG S Z,WEN Z,LIU X L,et al.Gas resistance characteristics in vertical tank with irregular sinter for waste heat recovery[J]. Journal of Central South University(Science and Technology),2021,52(6):1963.)
[11] ZHENG Y,DONG H,CAI J J,et al.Experimental investigation of volumetric heat transfer coefficient in vertical moving-bed for sinter waste heat recovery[J]. Applied Thermal Engineering,2019,151(3):335.
[12] 黄柱成,杨越,钟荣海,等. 热烧结矿竖式冷却过程传热特性[J]. 钢铁,2019,54(11):9.
(HUANG Z C,YANG Y,ZHONG R H,et al. Heat transfer characteristics in process of hot sinter vertical cooling[J]. Iron and Steel,2019,54(11):9.)
[13] ZHANG S,ZHAO L,FENG J S,et al.Thermal analysis of sinter vertical cooler based on waste heat recovery[J]. Applied Thermal Engineering,2019,157(7):113.
[14] 杨斌,张忠孝,冯祥,等. 竖式烧结矿冷却塔内气固换热特性研究[J]. 烧结球团,2015,40(1):10.
(YANG B,ZHANG Z X,FENG X,et al. Study on characteristics of gas-solid heat transfer in vertical sinter cooling tower[J]. Sintering and Pelletizing,2015,40(1):10.)
[15] 陈士柏,赛庆毅,丁红光,等. 烧结余热回收竖式炉内气体流动和传热的数值模拟[J]. 热能动力工程,2018,33(7):87.
(CHEN S B,SAI Q Y,DING H G,et al. Numerical simulation of gas flow and heat transfer in a vertical tank for sintering waste heat recovery[J]. Journal of Engineering for Thermal Energy and Power,2018,33(7):87.)
[16] LIU Y,WANG J Y,CHENG Z L,et al.Experimental investigation of fluid flow and heat transfer in a randomly packed bed of sinter particles[J]. International Journal of Heat and Mass Transfer,2016,99589.
[17] 徐天骄,张晟,高建业,等. 烧结矿余热回收竖罐热工参数确定方法及其应用[J]. 钢铁,2018,53(11):107.
(XU T J,ZHANG S,GAO J Y,et al. Determination method of thermal parameters of vertical tank for sinter waste heat recovery and its application[J]. Iron and Steel,2018,53(11):107.)
[18] FU J P,CAI J J.Numerical investigation and optimisation of heat transfer performance in a vertical sinter cooling packed bed using Taguchi and ANOVA methods[J]. Journal of Iron and Steel Research International,2020,27(8):898.
[19] ZHANG S,ZHAO L,FENG J S,et al.Numerical investigation of the air-particles heat transfer characteristics of moving bed-effect of particle size distribution[J]. International Journal of Heat and Mass Transfer,2022,182122036.
[20] ZHANG H M,ZHU X Z,CUI X Y,et al.The vertical layered cooling process and multi-objective optimization design of gas-solid heat transfer process in sinter[J]. Ironmaking and Steelmaking,2020,48:1.
[21] XU C Y,LIU Z C,WANG S C,et al.Numerical simulation and optimization of waste heat recovery in a sinter vertical tank[J]. Energies,2019,12(3):385.
[22] CHENG Z D,WANG H T,FENG J S,et al.Energy and exergy efficiency analysis of fluid flow and heat transfer in sinter vertical cooler[J]. Energies,2021,14:4522.
[23] 张雪宽,徐骥,孙俊杰,等. 竖冷设备中烧结矿石偏析行为的GPU高性能模拟[J]. 力学学报,2019,51(1):64.
(ZHANG X K,XU J,SUN J J,et al. Segregation behavior of sinter in vertically arranged cooler with hige performance GPU simulation[J]. Chinese Journal of Theoretical and Applied Mechanics,2019,51(1):64.)
[24] 孙俊杰,张永杰,徐骥. 烧结矿竖冷炉内物料的偏析[J]. 钢铁,2020,55(3):16.
(SUN J J,ZHANG Y J,XU J. Segregation of sinter particles in sinter shaft cooler[J]. Iron and Steel,2020,55(3):16.)
[25] 祁腾飞,黄军,孙俊杰,等. 烧结矿粒度组成对竖冷炉运行影响的DEM模拟[J]. 钢铁,2022,57(5):40.
(QI T F,HUANG J,SUN J J,et al. DEM simulation for effect of sinter particle size composition on operation of vertical cooling furnace[J]. Iron and Steel,2022,57(5):40.)
[26] QI T F,LI H F,SUN J J,et al.Simulation of gas-solid flow in sinter vertical cooling furnace[J]. Journal of Iron and Steel Research International,2023,30(11):2133.
[27] 祁腾飞,张永杰. 烧结矿竖冷炉结构优化研究现状[J]. 烧结球团,2023,48(5):9.
(QI T F,ZHANG Y J. Research status on improving vertical cooling furnace structure of sinter[J]. Sintering and Pelletizing,2023,48(5):9.)
[28] QI T F,LI H F,ZHANG Y J,et al.Influence of variable-diameter structure on gas-solid heat transfer in vertical shaft cooler[J]. Metals,2022,12(7):1187.
[29] 韩立浩,罗志国,邹宗树,等. COREX 熔化气化炉物料运动的物理模拟[J]. 重庆大学学报,2015(2):11.
(HAN L H,LUO Z G,ZOU Z S,et al. Physical simulation on burden movement in COREX melter gasifier[J]. Journal of Chongqing University(Natural Science Edition),2015(2):11.)
[30] 谭援强,肖湘武,郑军辉,等. 锥形改流体下部孔径对筒仓卸料流态的影响[J]. 农业工程学报,2016,32(19):82.
(TAN Y Q,XIAO X W,ZHENG J H,et al. Effect of outlet diameter of cone-in-cone insert on silo flow pattern[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(19):82.)

Accesses

Citation

Detail

段落导航
相关文章

/