转炉提钒吹炼不同阶段熔池的搅拌特性

高郅喆, 吕明, 侯娜娜, 郝翊杰, 魏国立, 侯福庆

钢铁 ›› 2025, Vol. 60 ›› Issue (3) : 56-65.

欢迎访问《钢铁》官方网站!今天是 2025年7月28日 星期一
钢铁 ›› 2025, Vol. 60 ›› Issue (3) : 56-65. DOI: 10.13228/j.boyuan.issn0449-749x.20240525
炼钢

转炉提钒吹炼不同阶段熔池的搅拌特性

  • 高郅喆1, 吕明1, 侯娜娜2, 郝翊杰1, 魏国立3, 侯福庆1
作者信息 +

Stirring characteristics of molten bath at different blowing stages in converter vanadium extraction process

  • 高郅喆1, 吕明1, 侯娜娜2, 郝翊杰1, 魏国立3, 侯福庆1
Author information +
文章历史 +

摘要

转炉提钒吹炼各阶段冶炼任务不同,且熔池成分和温度不断变化,使得冶炼不同阶段下的供氧枪位、流量等工况条件发生变化,导致吹炼不同阶段熔池的搅拌特性有所差异。建立了转炉熔池搅拌能模型,研究了不同吹炼阶段温度、供氧流量及底吹变化对熔池搅拌能的影响。发现转炉提钒过程各阶段顶吹搅拌能量密度均明显小于底吹搅拌,化学反应产生的CO气泡搅拌能仅占熔池搅拌能的0.41%~1.74%。随着冶炼的进行,顶吹搅拌能密度由165.30 W/t先降低至144.63 W/t,后逐渐升高至192.84 W/t;CO气泡产生的搅拌能密度最高为15.21 W/t;底吹氮气产生的搅拌能密度由786.92 W/t逐步升高至865.57 W/t。冶炼过程中,通过改变不同阶段顶吹枪位与底吹流量,合理增大了熔池搅拌能,并可有效降低碳损失。在此基础上,利用1∶3水模型试验研究了不同马赫数、供氧流量、枪位及底吹强度对熔池冲击特性和混匀时间的影响。随着吹炼的进行,马赫数为1.97时熔池冲击深度为61~90 mm,占熔池深度的19.93%~29.41%,冲击直径变化为37.41%~42.54%,混匀时间最长为54 s,最短为39 s,优化了转炉提钒工艺制度。此外,当底吹强度大于0.09 m3/(min·t)后,熔池混匀时间显著降低,底吹供气强度达到0.12 m3/(min·t)时,熔池搅拌强度增幅降低,当底吹流量增加至0.15 m3/(min·t)时,熔池混匀时间达到最小值27 s。为了减少熔池混匀时间,可适当增大底吹强度,提高提钒效率。通过调整提钒吹炼不同阶段枪位与供气强度,合理控制熔池的搅拌特性,有利于实现转炉提钒保碳。

Abstract

The smelting tasks at blowing stage in converter vanadium extraction process are different,and the composition and temperature of the molten pool are constantly changing,which makes the working conditions such as oxygen supply lance position and flow rate change at different stages of smelting,resulting in different stirring characteristics of the molten pool at different stages of blowing. The stirring energy model of converter molten pool was established,and the effects of temperature,oxygen supply flow and bottom blowing on the stirring energy of molten pool in different blowing stages were studied. It is found that the energy density of top blowing stirring in each stage of converter vanadium extraction process is significantly smaller than that of bottom blowing stirring,and the CO bubble stirring energy generated by chemical reaction only accounts for 0.41%-1.74%. With the smelting process,the top blowing stirring energy density decreases from 165.30 W/t to 144.63 W/t,and then gradually increases to 192.84 W/t. The stirring energy density produces by CO bubbles is up to 15.21 W/t. The stirring energy density produced by bottom blowing nitrogen gradually increases from 786.92 W/t to 865.57 W/t. In the smelting process,the stirring energy of the molten pool is reasonably increased by changing the top blowing lance position and bottom blowing flow rate at different stages,and the carbon loss can be effectively reduced. On this basis,the effects of different Mach number,oxygen flow rate,lance position and bottom blowing intensity on the impact characteristics and mixing time of molten pool were studied by 1∶3 water model experiment. With the progress of blowing,the impact depth of the molten pool is 61-90 mm under the condition of Mach number of 1.97,and the impact range of the molten pool is 19.93%-29.41%. The change degree of impact diameter is 37.41%-42.54%. The longest mixing time is 54 s and the shortest is 39 s. The process system of vanadium extraction from converter is optimized. In addition,when the bottom blowing intensity is greater than 0.09 m3/(min·t),the mixing time of the molten pool is significantly reduced. When the bottom blowing intensity reaches 0.12 m3/(min·t),the stirring intensity of the molten pool decreases. When the bottom blowing flow rate increases to 0.15 m3/(min·t),the mixing time of the molten pool reaches a minimum of 27 s. In order to reduce the mixing time of the molten pool,the bottom blowing intensity can be appropriately increased to improve the efficiency of vanadium extraction. It is beneficial to achieve vanadium extraction and carbon conservation in the converter by adjusting the lance position and gas supply intensity at different stages of vanadium extraction and blowing,and reasonably controlling the stirring characteristics of the molten pool.

关键词

转炉提钒 / 顶底复吹 / 熔池搅拌 / 搅拌特性 / 冲击特性 / 搅拌能密度 / 物理模拟 / 混匀时间

Key words

vanadium extraction in converter / top and bottom combined blown / molten bath stirring / stirring characteristics / impact characteristics / stirring energy density / physical simulation / mixing time

图表

引用本文

导出引用
高郅喆, 吕明, 侯娜娜, . 转炉提钒吹炼不同阶段熔池的搅拌特性[J]. 钢铁, 2025, 60(3): 56-65 https://doi.org/10.13228/j.boyuan.issn0449-749x.20240525
GAO Zhizhe, LÜ Ming, HOU Nana, et al. Stirring characteristics of molten bath at different blowing stages in converter vanadium extraction process[J]. Iron and Steel, 2025, 60(3): 56-65 https://doi.org/10.13228/j.boyuan.issn0449-749x.20240525

参考文献

[1] 甄小鹏. 转炉提钒过程中碳、钒氧化的热力学和宏观动力学研究[D].重庆:重庆大学,2012.(ZHEN X P.Study on the thermodynamics and macrokinetics of carbon and vanadium oxidation in the process of vanadium extraction from converter[D].Chongqing:Chongqing university,2012.)
[2] STEINBERG W S,GEYSER W,NELL J.The history and development of the pyrometallurgical processes at Evraz highveld steel and vanadium[J].The Journal of the Southern Africa Institute of Mining and Metallurgy,2011,111:705.
[3] SWEATMAN W L,GRAEME C W,FULLARD L,et al.Recovering vanadium during the production of steel from iron sand[J].The Journal of the Australian Mathematical Society,2011,53:1.
[4] 万朝明,易邦伦,钟正华. 低钒铁水提钒炼钢工艺分析[J].四川冶金,2010,32(1):4.(WAN C M,YI B L,ZHONG Z H. Technology of vanadium extraction from low vanadium molten iron[J].Sichuan Metallurgy,2010,32(1):4.)
[5] 陈勇,张大德. 转炉提钒工艺的开发与优化[J].中国冶金,2003,13(1):36.(CHEN Y,ZHANG D D. Development and optimization of vanadium extraction with converters[J].China Metallurgy,2003,13(1):36.)
[6] 李国庭,韩宇,刘玉伟. 150 t转炉低钒铁水提钒生产实践[J].中国冶金,2015,25(5):47.(LI G T,HAN Y,LIU Y W. Vanadium extraction from low-vanadium hot metal in 150 t converter[J].China Metallurgy,2015,25(5):47.)
[7] WEN J,JIANG T,ZHOU M,et al.Roasting and leaching behaviors of vanadium and chromium in calcification roasting-acid leaching of high-chromium vanadium slag[J].International Journal of Minerals Metallurgy and Materials,2018,25(5):515.
[8] 常福增,赵备备,李兰杰,等. 钒钛磁铁矿提钒技术研究现状与展望[J].钢铁钒钛,2018,39(5):71.(CHANG F Z,ZHAO B B,LI L J,et al. Research status and prospect of vanadium extraction from vanadium titano-magnetite[J].Iron Steel Vanadium Titanium,2018,39(5):71.)
[9] SARKAR R,GUPTA P,BASU S,et al.Dynamic modeling of LD converter steelmaking:reaction modeling using Gibbs' free energy minimization[J].Metallurgical and Materials Transactions B,2015,46(2):961.
[10] LEE L,ARUL J,LENCKI R,et al.A review on modified atmosphere packaging and preservation of fresh fruits and vegetables:physiological basis and practical aspects:part I[J].Packaging Technology and Science,1995,8(6):315.
[11] CANTUCCI B,MONTEGROSSI G,VASELLI O,et al.Geochemical modeling of CO2 storage in deep reservoirs:the Weyburn Project (Canada) case study[J].Chemical Geology,2009,265(1/2):181.
[12] 白瑞国,刘福海,朱荣,等. 150 t转炉提钒加料模式研究[J].工业加热,2012,41(6):56.(BAI R G,LIU F H,ZHU R,et al. Feeding in raw material for vanadium extraction in 150 t converter[J].Industrial Heating,2012,41(6):56.)
[13] 吕明,李航,谢堃,等. 转炉多元喷吹提钒的基础研究[J].钢铁研究学报,2021,33(6):485.(LÜ M,LI H,XIE K,et al. Fundamental research on vanadium extraction by injecting multiple gases in converter[J].Journal of Iron and Steel Research,2021,33(6):485.)
[14] LÜ M,ZHU R,WANG H,et al.Simulation and application of swirl-type oxygen lance in vanadium extraction converter[J].Steel Research International,2013,84(3):304.
[15] 唐宏伟. 70吨提钒转炉复吹工艺数理模拟研究[D].沈阳:东北大学,2014.(TANG H W.Mathematical simulation study on combined blowing process of 70 tons vanadium extraction converter[D].Shenyang:Northeast University,2014.)
[16] 丁小明,李京社,陈永峰,等. 复吹提钒转炉熔池形状与底枪布置方式[J].钢铁,2012,47(4):42.(DING X M,LI J S,CHEN Y F,et al. Metal bath shape and bottom tuyeres configuration in vanadium extraction converter[J].Iron and Steel,2012,47(4):42.)
[17] 陈炼,谢兵,戈文荪,等. 减少转炉提钒过程碳烧损[J].钢铁研究学报,2020,32(7):654.(CHEN L,XIE B,GE W S,et al. Reducing carbon loss during vanadium-extraction process in converter[J].Journal of Iron and Steel Research,2020,32(7):654.)
[18] 徐楚韶,李祖树,唐鑫,等. 氧顶转炉吹炼低钒铁水钒氧化的工艺技术[J].四川冶金,1993(4):66.(XU C S,LI Z S,TANG X,et al. Process technology of vanadium oxidation in low vanadium hot metal by oxygen top converter[J].Sichuan Metallurgy,1993(4):66.)
[19] 王慧,朱荣,吕明,等. 提钒用旋流氧枪喷头的数值模拟[J].北京科技大学学报,2014(1):89.(WANG H,ZHU R,LÜ M,et al. Numerical simulation of swirl-type lances in vanadium extraction process[J].Journal of University of Science and Technology Beijing,2014(1):89.)
[20] 唐雯聃,李京社,陈永峰,等. 150 t提钒转炉熔池流场优化研究[J].钢铁钒钛,2011,32(2):58.(TANG W D,LI J S,CHEN Y F,et al. Optimization of 150 tons vanadium extraction oxygen converter' s flow field[J].Iron Steel Vanadium Titanium,2011,32(2):58.)
[21] 赵进宣,肖峰,赵博,等. 环缝式底吹供气元件在铁水提钒中的应用[J].钢铁,2022,57(8):89.(ZHAO J X,XIAO F,ZHAO B,et al. Application of circular seam bottom blow gas supply element in extracting vanadium from vanadium-containing hot metal[J].Iron and Steel,2022,57(8):89.)
[22] 杜维玲,赵彻. 氧气顶吹转炉提钒温度控制探讨[J].承钢技术,2001(1):9.(DU W L,ZHAO C. Discussion on temperature control of vanadium extraction in oxygen top-blown converter[J].Chengde Iron and Steel Technology Journal,2001(1):9.)
[23] 刘质斌,张曦东,马登,等. 复吹转炉铁水提钒理论及热模拟试验[J].钢铁钒钛,2016,37(2):1.(LIU Z B,ZHANG X D,MA D,et al. Theoretical and thermal simulation of vanadium extraction from molten iron in combination blowing converter[J].Iron Steel Vanadium Titanium,2016,37(2):1.)
[24] 薛志,郭伟达,李强笃,等. 高效节能型旋流氧枪喷头的设计与应用[J].炼钢,2019,35(2):11.(XUE Z,GUO W D,LI Q D,et al. Design and application of high efficiency and energy saving swirl oxygen lance nozzle[J].Steelmaking,2019,35(2):11.)
[25] 李安林. 转炉提钒复吹长寿技术研究与应用[J].钢铁,2011,46(2):39.(LI A L. Study and application on extending the lifetime of combined blowing BOF during extracting vanadium[J].Iron and Steel,2011,46(2):39.)
[26] 吴龙,李士琦,迟桂友,等. 承钢100 t转炉提钒的过程特征[J].钢铁研究学报,2010,22(12):14.(WU L,LI S Q,CHI G Y,et al. Process characteristics in extracting vanadium by 100 t converter of chengde steel company[J].Journal of Iron and Steel Research,2010,22(12):14.)
[27] ZHOU X B,ERSSON M,ZHONG L C,et al.Numerical and physical simulations of a combined top-bottom-side blown converter[J].Steel Research International,2015,86(11):1328.
[28] LI Q,LI M M,KUANG S B,et al.Numerical simulation of the interaction between supersonic oxygen jets and molten slag-metal bath in steelmaking BOF process[J].Metallurgical and Materials Transactions B,2015,46(3):1494.
[29] 李勇. 顶底复吹转炉内气液两相流行为的模拟研究[D].沈阳:东北大学,2013.(LI Y.Simulation study on gas-liquid two-phase flow behavior in top-bottom combined blown converter[D].Shenyang:Northeast University,2013.)
[30] LI Y,LOU W T,ZHU M Y.Numerical simulation of gas and liquid flow in steelmaking converter with top and bottom combined blowing[J].Ironmaking and Steelmaking,2013,40(7):505.
[31] 韩永辉. 承钢铁水预脱硫提钒及半钢脱磷工艺优化研究[D].北京:北京科技大学,2017.(HAN Y H.Study on the process optimization of hot metal pretreatment and semi steel dephosphorus in Chengde Steel Company[D].Beijing:University of Science and Technology Beijing,2017.)

基金

国家自然科学基金面上基金资助项目(52374346); 陕西省创新能力支撑计划资助项目(2023-CX-TD-53); 陕西省重点研发计划资助项目(2024QY2-GJHX-34)

Accesses

Citation

Detail

段落导航
相关文章

/