焊接钢管高频感应加热的残余应力和组织演变

韩毅,肖瑶,闵祥玲,于恩林,李大龙,高颖

钢铁 ›› 2019, Vol. 54 ›› Issue (11) : 130-139.

PDF(8383 KB)
欢迎访问《钢铁》官方网站!今天是 2025年7月26日 星期六
PDF(8383 KB)
钢铁 ›› 2019, Vol. 54 ›› Issue (11) : 130-139. DOI: 10.13228/j.boyuan.issn0449749x.20190151
技术交流

焊接钢管高频感应加热的残余应力和组织演变

  • 韩毅1,肖瑶1,闵祥玲2,于恩林1,李大龙1,高颖3
作者信息 +

Residual stress and microstructure evolution of high #br# frequency welding of longitudinal pipe

  • 韩毅1,肖瑶1,闵祥玲2,于恩林1,李大龙1,高颖3
Author information +
文章历史 +

摘要

随着中国钢铁、冶金与电磁等交叉学科的快速发展,焊接钢管产量及质量日益提升。高频感应加热是生产焊接钢管的核心工序,获取更加精确的焊管高频加热过程的应力分布和微观组织演化规律,是进一步提升焊管品质的关键要素和学者们关切的问题。综合考虑热传导和微观组织转变对应力的影响,针对高频焊管特有的沙漏形热源形貌,定量分析了焊接热影响区微观组织演变过程和残余应力的分布规律,获得了考虑热应力和组织应力的残余应力分布。发现该应力特点为在焊缝附近轴向残余应力较大,最大等效残余应力出现在距焊缝中心1/2壁厚处的热影响区,在壁厚方向管材内部的中间层的残余应力较大,且应力分布与反映高频焊接热源形貌特征的加热温度峰值和加热温度宽度相关。而在焊缝中心处,未考虑组织变化的等效残余应力值是考虑组织变化的1.3倍。掌握焊管高频焊接应力和组织演变的特点和规律,可为优化高频焊接工艺提供理论依据,对提升高频焊管质量具有重要意义。

Abstract

With the rapidly development of crossdisciplines such as steel,metallurgy and electromagnetics in China,the output and quality of welded steel pipes are increasing day by day. The longitudinal pipe induction welding is the key process for producing high frequency welded pipes. Obtaining the more accurate residual stress distribution and microstructure evolution of welded pipes is the key factor to further improve the quality of welded pipes and the concerns of researchers. The effects of heat transfer and microstructure transformation on the stress are considered. For the unique hourglass welding temperature field of the highfrequency longitudinal welded pipe,the evolution process and the residual stress distribution of microstructure in the heat affected zone are quantitatively analyzed. The residual stress distribution is obtained,considering the thermal stress and microstructural stress. The results show that the radial residual stress is smaller near the weld seam,and the axial residual stress is larger. The maximum equivalent residual stress appears in the heat affected zone about 1/2 of the wall thickness from the center of the weld,and the position is related to the shape of the hourglassshaped temperature distribution of the highfrequency induction welding. At the center of the weld,the equivalent residual stress value without considering the change of the microstructure is 1.3 times that of the microstructure change. The distribution of residual stress at the peak of heating temperature and heating range is further quantitatively analyzed. Mastering the characteristics and laws of the highfrequency welding stress and microstructure evolution of welded pipe can provide a theoretical basis for optimizing the design of highfrequency welding process,which is great significance to improving the quality of highfrequency welded pipe further.

关键词

焊管 / 高频焊接 / 残余应力 / 应力场 / 组织演变

Key words

welded pipe / high frequency welding / residual stress / stress field / microstructural evolution

图表

引用本文

导出引用
韩毅, 肖瑶, 闵祥玲, . 焊接钢管高频感应加热的残余应力和组织演变[J]. 钢铁, 2019, 54(11): 130-139 https://doi.org/10.13228/j.boyuan.issn0449749x.20190151
HAN Yi1, XIAO Yao1, MIN Xiangling2, et al. Residual stress and microstructure evolution of high #br# frequency welding of longitudinal pipe[J]. Iron and Steel, 2019, 54(11): 130-139 https://doi.org/10.13228/j.boyuan.issn0449749x.20190151
中图分类号: TG409   

参考文献

[1] 冯耀荣, 张冠军, 李鹤林. 石油管工程技术进展及展望[J]. 石油管材与仪器, 2017, 3(01): 1-8.
FENG Yao-rong, ZHANG Guan-jun, LI He-lin. Progress and Prospect on Technology of Petroleum Tubular Goods Engineering[J]. Petroleum Instruments, 2017, 3(01): 1-8.
[2] Obeid Obeid, Alfano Giulio, Bahai Hamid, et al. A parametric study of thermal and residual stress fields in lined pipe welding[J]. Thermal Science and Engineering Progress, 2017, 4: 205-218.
[3] 岑耀东, 陈芙蓉. 电阻缝焊数值模拟研究进展[J]. 焊接学报, 2016, 37(2): 123-128+134.
CENG Yao-dong, CHEN Fu-rong. Research progress on numerical simulation of resistance seam welding[J]. Transactions of the China Welding Institution, 2016, 37(2): 123-128+134.
[4] Budzakoska-Testone Elizabeth, Dunne Druce, Li Huijun, et al. Structural metastability of “cold” repair welds in 2.25Cr-1Mo (P22) steel under elevated temperature and stress conditions[J]. Materials Science and Engineering: A, 2017, 705: 315-324.
[5] 徐凯, 潘小燕, 肖福仁, 等. 焊缝余高及去应力退火对X80钢管焊接接头疲劳性能的影响[J]. 焊管, 2018, 41(10): 1-7.
XU Kai, PAN Xiao-yan, XIAO Fu-ren, et al. Effects of weld reinforcement and stress relief annealing on fatigue properties of welded joint for X80 steel pipe [J]. Welded Pipe and Tube, 2018, 41(10): 1-7.
[6] Babakri, Khalid Ali. Improvements in flattening test performance in high frequency induction welded steel pipe mill[J]. Journal of Materials Processing Technology. 2010, 210: 2171-2177.
[7] Arora Kanwer Singh, Pandu Sangeetha Ranga, Shajan Nikhil, et al. Microstructure and impact toughness of reheated coarse grain heat affected zones of API X65 and API X80 linepipe steels[J]. International Journal of Pressure Vessels and Piping, 2018, 163: 36-44.
[8] Tian Peng, Xu Kai, Lu Guang-ping, et al. Evaluation of the mechanical properties of the X52 high frequency electric resistance welding pipes[J]. International Journal of Pressure Vessels and Piping, 2018, 165: 59-67.
[9] 闫波, 宿成, 王建钢, 等. ERW焊接J55石油套管用热轧带钢的研制[J]. 轧钢, 2017, 34(1): 70-72.
YAN Bo, SU Cheng, WANG Jian-gang, et al. Development of hot rolled strip for ERW welded J55 oil pipe[J]. Steel Rolling, 2018, 165: 59-67.
[10] 于恩林, 肖瑶, 刘丰, 等. 高频直缝焊管焊接和热处理研究进展[J]. 钢铁, 2019 (已录用).
YU En-lin, XIAO Yao, LIU Feng, et al. Welding and heat treatment of high frequency longitudinal welded pipe[J]. Iron and Steel, 2019 (Accepted).
[11] Okabe Takatoshi, Toyoda Shunsuke, Goto Sota, et al. Numerical analysis of welding phenomena in high-frequency electric resistance welding[C]// 15th International Conference on Metal Forming 2014. Palermo: Trans Tech Publications Ltd. 2014: 525-531.
[12] Han Yi, Xiao Yao, Yu Enlin, et al. Electromagnetic heating and motion mechanism for contact welded pipes based on a node sequential number method[J]. Applied Thermal Engineering, 2018, 137: 822-835.
[13] Yan P., Güng?r ? E., Thibaux P., et al. Tackling the toughness of steel pipes produced by high frequency induction welding and heat-treatment[J]. Materials Science and Engineering: A, 2011, 528(29-30): 8492-8499.
[14] 郝庆乐. 中小口径高频焊管无缝化技术与装备开发研究[D]. 北京: 北京科技大学, 2018.
HAO Qing-le. Research on seamless technology and equipment development for medium or small caliber HFW tubes[D]. Beijing: University of Science and Technology Beijing, 2018.
[15] Pei Yan. High Frequency induction welding & post-welding heat treatment of steel pipes[D]. University of Cambridge, 2011.
[16] 李殿杰, 胡日荣, 张春林, 等. 高频焊接油管试制及其性能影响因素分析[J]. 钢铁研究学报, 2016, 28(10): 75-78.
LI Dian-jie, HU Ri-rong, ZHANG Chun-lin, et al. Trial production and influencing factors analysis on properties of high frequency welding tubing[J]. Journal of Iron and Steel Research, 2016, 28(10): 75-78.
[17] Xu Yaowu, Liu Hao, Bao Rui, et al. Residual stress evaluation in welded large thin-walled structures based on eigenstrain analysis and small sample residual stress measurement[J]. Thin-Walled Structures, 2018, 131: 782-791.
[18] Zhao Lei, Liang Jun, Zhong Qunpeng, et al. Numerical simulation on the effect of welding parameters on welding residual stresses in T92/S30432 dissimilar welded pipe[J]. Advances in Engineering Software, 2014, 68: 70-79.
[19] 区达铨, 王发展, 赵申, 等. 大型复杂框架结构焊接变形与应力控制仿真[J]. 中国机械工程, 2018, 29(5): 616-622.
Ou Daquan, Wang Fazhan, Zhao Shen, et al. Welding deformations and stress simulations control of large-scale complex structures[J]. China Mechanical Engineering, 2018, 29(5): 616-622.
[20] 于恩林, 韩毅, 范玉林, 等. HFW管高频感应加热过程电磁热耦合数值模拟[J]. 焊接学报, 2010, 31(4): 5-8.
Yu Enlin, Han Yi, Fan Yulin, et al. Simulation of coupling of electromagnetic and thermal fields for process of high-frequency induction heating of HFW pipe[J]. Transactions of the China Welding Institution, 2010, 31(4): 5-8.
[21] Han Yi, Yu Enlin. Numerical analysis of a high frequency induction welded pipe[J]. Welding Journal, 2012, 91(10): 270-277.
[22] Schoderb?ck Peter. Investigation of complex residual stress states in the near-surface region: Evaluation of the complete stress tensor by X-ray diffraction pattern decomposition[J]. Applied Surface Science, 2019, 466: 151-164.
[23] J. Epp. 4-X-ray diffraction (XRD) techniques for materials characterization[M]// Materials Characterization Using Nondestructive Evaluation (NDE) Methods. Bremen: Foundation Institute of Materials Science. 2016: 81-124.
[24] 李亚欣, 刘雅政, 洪斌, 等. 逐层钻孔法测量P110级石油套管淬火残余应力分析[J]. 钢铁, 2010, 45(6): 59-62.
LI Ya-xin, LIU Ya-zheng, HONG Bin, et al. Analysis of quenching residual stress of P110 oil casing by incremental hole drilling method[J]. Iron and Steel, 2010, 45(6): 59-62.

基金

国家自然科学基金资助项目;高端钢铁冶金联合研究基金项目;河北省高等学校科学技术研究基金项目;国家冷轧板带装备及工艺工程技术研究中心开放课题

PDF(8383 KB)

15

Accesses

0

Citation

Detail

段落导航
相关文章

/