摘要
对微合金化控轧控冷钢筋的纵向金相组织进行了研究,并分析了不同成分试验钢纵向“条带”组织的差异及形成原因。研究结果表明:偏析元素(P、Si、Mn等)在轧制过程中沿轧制方向呈条状分布,是20MnSi、20MnSiV钢产生带状组织的原因。铌及其碳氮化物的溶质拖曳和“钉扎”作用,使20MnSiNb钢的奥氏体未再结晶轧制温度提高到1050℃,在冷却过程中,先共析铁素体在形变奥氏体晶界和内部变形带均匀析出,随后沿形变奥氏体晶界(在先共析铁素体与奥氏体的界面上)生成珠光体带,最后在形变奥氏体晶粒内部形成贝氏体条。研究条件下优势形核点的排序为:形变奥氏体晶界和形变奥氏体晶内变形带、偏析元素和夹杂、再结晶奥氏体晶界。
Abstract
The cross section microstructure of the steel bar with micro alloying controlled rolling and controlled cooling technique as well as the reasons of different compositions to the microstructures were investigated. It is found that the segregation of elements (P,Si and Mn et al.) distributes like stripping which results in the such stripping microstructure for steel 20MnSi and 20MnSiV during rolling. The 20MnSiNb steel can not be recrystallized below 1050℃ for the pinning by Nb and its compound containing C and N elements. The proeutectoid ferrite is formed homogemously in grain boundaries of deformation austenite and interior of deformation zone, then, the pearlite belt is separated out in grain boundaries of deformation austenite (between the grain boundaries proeutectoid ferrite and austenite). The bainite strip is generated in the grain of deformation austenite during last cooling stage. The proper order precipitation of the microstructure of the samples shows as follow: grain boundaries of deformed austenite and deformed band of deformed austenite, segregation of elements, grain boundaries of recrystallization austenite.
关键词
微合金化 /
控制轧制和控制冷却 /
带状组织
{{custom_keyword}} /
图表
曹重. , {{custom_author.name_cn}}等.
微合金化控轧控冷钢筋纵向金相组织研究[J]. 钢铁, 2013, 48(6): 61-66
CAO Tong. , {{custom_author.name_en}}et al.
Investigation of Cross Section Microstructure of the Steel Bar With Micro Alloying Controlled Rolling and Controlled Cooling Technique[J]. Iron and Steel, 2013, 48(6): 61-66
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Klaus V,R.C. Guimarues. Effect of Niobium Works Steels and Application.微合金化技术[J].2002,2(2):49~53
[2]戢景文,车韵怡,刘爱生等.钢铁中稀土合金化的内耗研究及其理论[J].中国稀土学报.1996,14(4):350~359
[3]苏世怀,孙维,汪开忠.铌微合金化技术在H型钢生产中的应用[J].微合金化技术.2011(1):53~58
[4]小指军夫.控制轧制控制冷却一一改善钢材材质的轧制技术发展[M].李伏桃,陈岿,译.北京:冶金工业出版社,2002
[5]王国栋.新一代控制轧制和控制冷却技术与创新的热轧过程[J]. 东北大学学报(自然科学版),2009,30(7):913~914
[6]王有铭,李曼云,韦光.钢材的控制轧制和控制冷却[M].北京:冶金工业出版社,1995.30~36
[7]陈伟,施哲,赵宇等.铌微合金化和控冷工艺开发HRB500抗震钢筋[J].材料热处理学报.2010,31(7):77~82
[8]蒋艳菊.超快速冷却HRB500IV螺纹钢筋的生产[C].2007年中国钢铁年会论文集.北京冶金工业出版社,2007:732~738
[9]潘金生,仝健民,田民波.材料科学基础[M].清华大学出版社,1998:544~545
[10]李文卿,王连伟.控制轧制和控制冷却对16Mn钢板带状组织的影响[J].物理测试,1990;(4):23~26
[11]雍歧龙,马鸣图.微合金钢-物理和力学冶金[M].冶金工业出版社,1989:105~120
[12]齐俊杰,黄运华,张跃.微合金化钢[M].冶金工业出版社,2006:45~47
[13]齐俊杰,黄运华,张跃.微合金化钢[M].冶金工业出版社,2006:96~99
[14]翁宇庆,柳得橹,傅杰等.超细晶钢[M].冶金工业出版社,2003:37
[15]Tamura I,Sekire H,Tancaka T,Ouchi C. Thermomechanical Processing of HSLA[C]. London: Butterworth and Co.1988:80
[16]储凯,许斌,李先民等.机械工程材料[M].重庆大学出版社,1998:68
[17]周乐育,刘雅政. Nb 对 C-Si-Mn-Cr 双相钢相变规律、组织和性能的影响[J]. 钢铁, 2008, 43(7):77.
[18]朱兴元、刘 忆等.金属学与热处理[M].中国林业出版社,2006:113~114
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}