整辊内嵌式板形检测辊瞬态温度场与应力场分析

吴海淼 ,刘宏民,于丙强,杨利坡

钢铁 ›› 2014, Vol. 49 ›› Issue (5) : 47-51.

欢迎访问《钢铁》官方网站!今天是 2025年7月27日 星期日
钢铁 ›› 2014, Vol. 49 ›› Issue (5) : 47-51.
冶金工艺技术

整辊内嵌式板形检测辊瞬态温度场与应力场分析

  • 吴海淼1,2,刘宏民1,于丙强1,杨利坡1
作者信息 +

Transient Temperature Field and Stress Field Analysis of Entire Roller Embedded Shapemeter Roll

  • 吴海淼1,2,刘宏民1,于丙强1,杨利坡1
Author information +
文章历史 +

摘要

在冷轧可逆轧制的不同道次,与板形检测辊接触的带钢温度差异显著,使得检测辊的温度场和应力场不稳定。运用有限元软件ANSYS建立了板形检测辊的热力耦合模型,分析了轧制过程中板形检测辊的瞬态温度场和应力场。结果表明,轧制开始后接触带钢的热量由辊体外表面向内表面逐渐传递,传感器正上方的辊体外表面温度上升最快,并在1940s达到温度最大值135℃;骨架顶部与辊体内孔面的接触热阻使传感器的温度上升较慢,骨架顶部在 2280s达到温度最大值134℃;板形检测辊的最大应力发生在与骨架顶部接触的辊体内孔面上,其在940s达到最大值301MPa,满足材料强度的许用应力要求。通过模拟分析结果与现场实测数据对比,证明了有限元分析模型的正确性。

Abstract

The temperature of cold-rolled strip contacting with the shapemeter roll is obviously different in cold reversible rolling’s different passes. Therefore, the temperature field and stress field of shapemeter roll are very instable. Using finite element software ANSYS, the coupled thermo-mechanical model was established to analyze the shapemeter roll’s transient temperature field and stress field in cold reversible rolling process. Analysis results show that the contacting strip’s heat transfers gradually from roll body’s outside surface to inner hole surface in rolling process, and the temperature of roll body’s outside surface right above the sensor rises fastest and attains maximum value of 135℃ after 1940 seconds’ rolling. Because of the thermal contact resistance of sensor framework’s top surface and roll body’s inner hole surface, the sensor’s temperature rises slowly, and the temperature of framework’s top surface attains maximum value of 134℃ after 2280 seconds’ rolling. Shapemeter roll body’s maximum stress occurs at the contact area of roll body’s inner hole surface and sensor framework’s top surface. The maximum value of 301MPa occurs after 940 seconds’ rolling, and it can fulfill the material strength requirement. Comparisons of simulation results with field test data prove the correctness of finite element model.

关键词

可逆轧制 / 检测辊 / 温度场 / 应力场 / 有限元

图表

引用本文

导出引用
吴海淼. 整辊内嵌式板形检测辊瞬态温度场与应力场分析[J]. 钢铁, 2014, 49(5): 47-51
WU Hai-Miao. Transient Temperature Field and Stress Field Analysis of Entire Roller Embedded Shapemeter Roll[J]. Iron and Steel, 2014, 49(5): 47-51
中图分类号: TP211   

参考文献

[1] 陶文铨著.传热学[M].西安:西北工业大学出版社,2006.
[2] 王文静,谢基龙,刘志明等.基于循环对称结构 制动盘的三维瞬态温度场仿真[J].机械工程学报,2002,38(12):131-134.
[3] Lonsdale C, Pilch J. Wheel thermal loading issues for issues for heavy haul service [A]. Journal of Iron and Steel Research International [C],America, Air Brake Association,2003
[4] Ramanan L, et al. Thermal-mechanical finite element analysis of a rail wheel[J]. International Journal of Mechanical Sciences,1999,(41):487~505
[5] 夏毅敏,薛静,姚萍屏等.高速列车组制动盘瞬态温度与应力场计算[J].中南大学学报,2010,41(4):1334-1339.
[6] LI Chang-sheng, YU Hai-liang, et al. Numerical Simulation of Temperature Field and Thermal Stress Field of Work Roll During Hot Strip Rolling. Journal of Iron and Steel Research International,2007,14(5):18-21.
[7] 韩继铖,任学平.热轧带钢轧机工作辊热应力的有限元分析[J].包头钢铁学院学报,2006,25(4):352-356.
[8] 杨莺,王刚.机车制动盘三维瞬态温度场与应力场仿真[J].机械科学与技术,2005,24(10):1257-1260.
[9] 郑红霞,刘玉军,张全忠等.典型制动条件下货车车轮温度场和热应力场的有限元仿真[J].机械科学与技术,2009,28(4):500-504.
[10] 李金良,肖楠,谢基龙等.重载货车车轮踏面制动辐板热应力分析[J].机械工程学报,2012,48(12):133-138.
[11] 侯镇冰.固体热传导[M].上海:上海科学技术出版社, 2009, 4-6.
[12] 杜凤山,于辉,郭振宇等.板带热轧工作辊温度场的研究[J].塑性工程学报,2005,12(2):78-81.
[13] 孙蓟泉,张兴中,盛义平等.连铸机辊子传热系数的确定[J].连铸,1996,12(4):14-19.
[14] 叶亚宁,中厚板矫直及矫直辊热力藕合数值模拟研究[D],燕山大学硕士学位论文,2011,42-44.
[15] 丁群,谢基龙.基于三维模型的制动盘温度场和应力场计算[J].铁道学报,2002,24(6):34-38.

基金

国家科技支撑计划项目;河北省自然科学钢铁联合研究基金项目

7

Accesses

0

Citation

Detail

段落导航
相关文章

/