大型盾构机用轴承钢奥氏体晶粒长大模型

张 丹, 刘雅政, 周乐育, 韩 强, 霍朝霞, 李忠之

钢铁 ›› 2014, Vol. 49 ›› Issue (6) : 79-84.

欢迎访问《钢铁》官方网站!今天是 2025年7月28日 星期一
钢铁 ›› 2014, Vol. 49 ›› Issue (6) : 79-84.
钢铁材料

大型盾构机用轴承钢奥氏体晶粒长大模型

  • 张 丹1, 刘雅政1, 周乐育1, 韩 强1, 霍朝霞1, 李忠之2
作者信息 +

Research on Austenite Grain Growth Behavior of GCr15SiMn Steel

  • 张 丹1, 刘雅政1, 周乐育1, 韩 强1, 霍朝霞1, 李忠之2
Author information +
文章历史 +

摘要

利用箱式电阻炉研究了加热温度为900,950,1 000,1 050,1 100,1 150 ℃,保温时间为10,30,60,90 min时大型盾构机用GCr15SiMn轴承钢的奥氏体晶粒长大规律,利用截线法统计奥氏体晶粒尺寸。试验结果表明,随着加热温度提高和保温时间延长,奥氏体晶粒尺寸和长大速率逐渐增大,加热温度的提高比保温时间的延长对奥氏体晶粒长大速率影响更大,奥氏体晶粒迅速长大的加热温度为1 000 ℃,保温时间为60 min。在已有晶粒长大模型的基础上,通过对试验数据进行线性回归,得到了描述GCr15SiMn钢奥氏体晶粒长大规律的数学模型。

Abstract

The GCr15SiMn bearing steel apply to large-scale shield tunneling machine was heated in an electric furnace at the temperature of 900, 950, 1 000, 1 050, 1 100, 1 150 ℃, and holding time of 10, 30, 60, 90 min to investigate austenite grain growth behavior. The grain size of austenite was measured by using linear intercept method on Image-tool software. The experimental results show that grain size and growth rate of austenite increases with the increasing of heating temperature and holding time. The increasing of heating temperature has a larger influence on the grain growth rate than the increasing of holding time. When the heating temperature is 1 000 ℃ and holding time is 60 min, the austenite grains grow up quickly. On the basis of previous models and experimental results, a mathematical model for austenite grain growth of GCr15SiMn steel is obtained using regression analysis which is.

关键词

盾构机轴承 / 奥氏体 / 晶粒长大 / 数学模型

图表

引用本文

导出引用
张丹, 周乐育, 韩强, . 大型盾构机用轴承钢奥氏体晶粒长大模型[J]. 钢铁, 2014, 49(6): 79-84
ZHANG Dan, ZHOU Le-Yo, HAN Jiang, et al. Research on Austenite Grain Growth Behavior of GCr15SiMn Steel[J]. Iron and Steel, 2014, 49(6): 79-84

参考文献

[1] Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Science, 1979, 13(3-4): 187.
[2] Cuddy L J, Raley J C. Austenite grain coarsening in microalloyed steels[J]. Metallurgical Transactions A, 1983, 14A(10): 1989.
[3] 唐国翌, 郑炀曾. V-Ti-N微合金钢的晶粒粗化行为[J]. 金属学报, 1989, 25(6): 414.
[4] 张羊换, 佟庆安, 刘永铨. (V, Nb)C溶解规律及其对奥氏体晶粒粗化的影响[J]. 东北工学院学报, 1992, 13(3): 253.
[5] 黎秀球, 崔文暄. 含钛钢的奥氏体晶粒粗化与再结晶参数[J]. 北京科技大学学报, 1993, 15(1): 82.
[6] 钟云龙, 刘国权, 刘胜新, 等. 新型油井管钢33Mn2V的奥氏体晶粒长大规律[J]. 金属学报, 2003, 39(7): 699.
[7] 刘胜新, 陈永, 赵志毅, 等. 微合金元素对Q345钢奥氏体晶粒粗化行为的影响[J]. 铸造技术, 2006, 27(10): 1071.
[8] 彭晟, 朱松鹤, 张恒华, 等. 高强度船板钢奥氏体晶粒长大的规律[J]. 钢铁, 2009, 44(2): 72.
[9] 刘建涛, 刘国权, 胡本芙, 等. FGH96合金晶粒长大规律的研究[J]. 材料热处理学报, 2004, 25(6): 25-29.
[10] 刘饶川, 汪凌云, 辜蕾钢, 等. AZ31B镁合金板材退火工艺及晶粒尺寸模型的研究[J]. 轻合金加工技术, 2004, 32(2): 22.
[11] 余永宁, 刘国权. 体视学——组织定量分析的原理和应用[M]. 北京: 冶金工业出版社, 1989: 12.
[12] Zhang S S, Li M Q, Liu Y G, et al. The growth behavior of austenite grain in the heating process of 300M steel[J]. Materials Science and Engineering: A, 2011, 528(15): 4967.
[13] Microstructure and normal grain growth in metals and ceramics. Part I. Theory. (USA)[J]. Vacuum, 1981, 31(6): 277.
[14] 岳重祥, 张立文, 廖舒纶, 等. GCr15钢奥氏体晶粒长大规律研究[J]. 材料热处理学报, 2008, 29(1): 94.
[15] 潘晓刚, 唐荻, 宋勇, 等. DP590级双相钢奥氏体晶粒长大模型[J]. 北京科技大学学报, 2013, 35(2): 189.
[16] Bhadeshia H K D H. Steels for bearings[J]. Progress in Materials Science, 2012, 57: 268.
[17] Xun Y, Lavernia E J, Mohamed F A. Grain growth in nanocrystalline Zn-22% Al[J]. Materials Science and Engineering: A, 2004, 371(1-2): 135.
[18] Li W, Xia K. Kinetics of the α grain growth in a binary Ti-44Al alloy and a ternary Ti-44Al-0.15Gd alloy[J]. Materials Science and Engineering: A, 2002, 329-331: 430.

基金

重大装备用轴承钢关键技术开发(863计划)

8

Accesses

0

Citation

Detail

段落导航
相关文章

/